Skip to main content
Log in

Factors for Conversion of the Content of Double-Stranded DNA to Carbon of Soil Microbial Biomass

  • SOIL MICROBIOME UNDER THE CONDITIONS OF ANTHROPOGENIC IMPACT
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

The relationship between the concentration of soil DNA and microbial biomass determined by the method of substrate-induced respiration was studied in a wide range of soils differing in particle size distribution, acidity, organic carbon content, microbial biomass, and type of human activity in antiquity and at the present time. Calcaric Leptosols and Leptic Phaeozems of medieval agricultural lands in the Central Caucasus, Stratozems of agricultural terraces of the late Middle Ages—Modern times in the middle mountain zone of the Eastern Caucasus, as well as Kastanozems and Solonetzes with different grazing intensity in the dry steppe zone (Rostov region) were chosen as the key sites. It was shown that the determination of soil double-stranded DNA concentration is a reliable and simple method for determining microbial biomass in soils with a loamy texture, the organic carbon content < 2%, and the microbial biomass <700 µg C/g dry soil. The conversion factor FDNA in such soils varied in a narrow range from 5.24 to 5.41. In soils with a high content of organic carbon, an increase in FDNA (6.56 and 10.56) was observed due to the presence of recalcitrant extracellular DNA. Agristratified soil of sandy loamy texture was characterized by a lower degree of double-stranded DNA preservation, which resulted in a decrease in the determined microbial biomass (FDNA = 4.22). A reduced conversion factor FDNA (4.78) was also found in the soils of pastures in the dry steppe zone, which confirms the known limitations of using the substrate-induced respiration method in alkaline soils. Human activity did not significantly affect the relationship between the amount of soil DNA and microbial biomass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Agroclimatic Resources of the Kalmyk ASSR (Gidrometeorol. Izd., Leningrad, 1974) [in Russian].

  2. Agroclimatic Resources of the Stavropol Krai (Gidrometeorol. Izd., Leningrad, 1971) [in Russian].

  3. A. V. Borisov, N. N. Kashirskaya, M. V. El’tsov, V. N. Pinskoy, L. N. Plekhanova, and I. A. Idrisov, “Soils of ancient agricultural terraces of the Eastern Caucasus,” Eurasian Soil Sci. 54 (5), 665–679 (2021). https://doi.org/10.1134/S1064229321050045

    Article  Google Scholar 

  4. M. B. Minkin, V. M. Babushkin, and P. A. Sadimenko, Solonetzes of the Southeast of Rostov Oblast (Izd. Rostov. Univ., Rostov-on-Don, 1980) [in Russian].

    Google Scholar 

  5. Theories and Methods of Soil Physics. Collective Monograph, Ed. by E. V. Shein and L. O. Karpachevskii (Grif and K, Moscow, 2007) [in Russian].

    Google Scholar 

  6. J. P. E. Anderson and K. H. Domsch, “Physiological method for quantitative measurement of microbial biomass in soils,” Soil Biol. Biochem. 10, 215–221 (1978). https://doi.org/10.1016/0038-0717(78)90099-8

    Article  Google Scholar 

  7. T.-H. Anderson and R. Martens, “DNA determinations during growth of soil microbial biomasses,” Soil Biol. Biochem. 57, 487–495 (2013). https://doi.org/10.1016/j.soilbio.2012.09.031

  8. D. S. Bachoon, E. Otero, and R. E. Hodson, “Effects of humic substances on fluorometric DNA quantification and DNA hybridization,” J. Microbiol. Methods 47, 73–82 (2001). https://doi.org/10.1016/S0167-7012(01)00296-2

    Article  Google Scholar 

  9. T. Beck, R. G. Joergensen, E. Kandeler, F. Makeschin, E. Nuss, H. R. Oberholzer, and S. Scheu, “An inter-laboratory comparison of ten different ways of measuring soil microbial biomass,” Soil Biol. Biochem. 29, 1023–1032 (1997). https://doi.org/10.1016/S0038-0717(97)00030-8

    Article  Google Scholar 

  10. E. V. Blagodatskaya, S. A. Blagodatskii, and T.-H. Anderson, “Quantitative isolation of microbial DNA from different types of soils of natural and agricultural ecosystems,” Microbiology 72 (6), 744–749 (2003). https://doi.org/10.1023/B:MICI.0000008379.63620.7b

    Article  Google Scholar 

  11. S. A. E. Blum, M. G. Lorenz, and W. Wackernagel, “Mechanism of retarded DNA degradation and prokaryotic origin of DNases in nonsterile soils,” Syst. Appl. Microbiol. 20, 513–521 (1997). https://doi.org/10.1016/S0723-2020(97)80021-5

    Article  Google Scholar 

  12. K. G. van den Boogaart, P. Filzmoser, K. Hron, M. Templ, and R. Tolosana-Delgado, “Classical and robust regression analysis with compositional data,” Math. Geosci. 53, 823–858 (2021). https://doi.org/10.1007/s11004-020-09895-w

    Article  Google Scholar 

  13. E. Chernysheva, T. Khomutova, F. Fornasier, T. Kuznetsova, and A. Borisov, “Effects of long-term medieval agriculture on soil properties: A case study from the Kislovodsk basin, Northern Caucasus, Russia,” J. Mt. Sci. 15, 1171–1185 (2018). https://doi.org/10.1007/s11629-017-4666-7

    Article  Google Scholar 

  14. C. Crecchio and G. Stotzky, “Binding of DNA on humic acids: effect on transformation of Bacillus subtilis and resistance to DNase,” Soil Biol. Biochem. 30, 1060–1067 (1998). https://doi.org/10.1016/S0038-0717(97)00248-4

    Article  Google Scholar 

  15. F. Fornasier, J. Ascher, M. T. Ceccherini, E. Tomat, and G. Pietramellara, “A simplified rapid, low-cost and versatile DNA-based assessment of soil microbial biomass,” Ecol. Indic. 45, 75–82 (2014). https://doi.org/10.1016/j.ecolind.2014.03.028

    Article  Google Scholar 

  16. C. Gangneux, M. Akpa-Vincesla, H. Sauvage, S. Desaire, S. Houot, and K. Laval, “Fungal, bacterial and plant dsDNA contributions to soil total DNA extracted from silty soils under different farming practices: relationships with chloroform-labile carbon,” Soil Biol. Biochem. 43, 431–437 (2011). https://doi.org/10.1016/j.soilbio.2010.11.012

    Article  Google Scholar 

  17. C. D. Georgiou and I. Papapostolou, “Assay for the quantification of intact/fragmented genomic DNA,” Anal. Biochem. 358, 247–256 (2006). https://doi.org/10.1016/j.ab.2006.07.035

  18. H. Gong, Q. Du, S. Xie, W. Hu, M. A. Akram, Q. Hou, L. Dong, Y. Sun, A. Manan, Y. Deng, J. Ran, and J. Deng, “Soil microbial DNA concentration is a powerful indicator for estimating soil microbial biomass C and N across arid and semi-arid regions in northern China,” Appl. Soil Ecol. 160, 103863 (2021). https://doi.org/10.1016/j.apsoil.2020.103869

    Article  Google Scholar 

  19. B. S. Griffiths, M. Díaz-Raviña, K. Ritz, J. W. McNicol, N. Ebblewhite, and E. Bååth, “Community DNA hybridisation and % G + C profiles of microbial communities from heavy metal polluted soils,” FEMS Microbiol. Ecol. 24, 103–112 (1997). https://doi.org/10.1111/j.1574-6941.1997.tb00427.x

    Article  Google Scholar 

  20. J. A. Homburg and J. A. Sandor, “Anthropogenic effects on soil quality of ancient agriculture systems of the American Southwest,” Catena 85, 144–154 (2011). https://doi.org/10.1016/j.catena.2010.08.005

    Article  Google Scholar 

  21. R. G. Joergensen and C. Emmerling, “Methods for evaluating human impact on soil microorganisms based on their activity, biomass, and diversity in agricultural soils,” J. Plant Nutr. Soil Sci. 169, 295–309 (2006). https://doi.org/10.1002/jpln.200521941

    Article  Google Scholar 

  22. T. E. Khomutova, F. Fornasier, M. V. Yeltsov, E. V. Chernysheva, and A. V. Borisov, “Influence of grazing on the structure and biological activity of dry steppe soils of the southern Russian Plain,” Land Degrad. Dev. 32, 4832–4844 (2021). https://doi.org/10.1002/ldr.4032

    Article  Google Scholar 

  23. S. E. Leckie, C. E. Prescott, S. J. Grayston, J. D. Neufeld, and W. W. Mohn, “Comparison of chloroform fumigation-extraction, phospholipid fatty acid, and DNA methods to determine microbial biomass in forest humus,” Soil Biol. Biochem. 36, 529–532 (2004). https://doi.org/10.1016/j.soilbio.2003.10.014

    Article  Google Scholar 

  24. D. J. Levy-Booth, R. G. Campbell, R. H. Gulden, M. M. Hart, J. R. Powell, J. N. Klironomos, K. P. Pauls, C. J. Swanton, J. T. Trevors, and K. E. Dunfield, “Cycling of extracellular DNA in the soil environment,” Soil Biol. Biochem. 39, 2977–2991 (2007). https://doi.org/10.1016/j.soilbio.2007.06.020

    Article  Google Scholar 

  25. G. Lloyd-Jones and D. W. F. Hunter, “Comparison of rapid DNA extraction methods applied to contrasting New Zealand soils,” Soil Biol. Biochem. 33, 2053–2059 (2001). https://doi.org/10.1016/S0038-0717(01)00133-X

    Article  Google Scholar 

  26. M. G. Lorenz and W. Wackernagel, “Adsorption of DNA to sand and variable degradation rates of adsorbed DNA,” Appl. Environ. Microbiol. 53, 2948–2952 (1987). https://doi.org/10.1128%2Faem.53.12.2948-2952.1987

    Article  Google Scholar 

  27. H. Marstorp and E. Witter, “Extractable dsDNA and product formation as measures of microbial growth in soil upon substrate addition,” Soil Biol. Biochem. 31, 1443–1453 (1999). https://doi.org/10.1016/S0038-0717(99)00065-6

    Article  Google Scholar 

  28. E. M. Morrissey, T. A. McHugh, L. Preteska, M. Hayer, P. Dijkstra, B. A. Hungate, and E. Schwartz, “Dynamics of extracellular DNA decomposition and bacterial community composition in soil,” Soil Biol. Biochem. 86, 42–49 (2015). https://doi.org/10.1016/j.soilbio.2015.03.020

    Article  Google Scholar 

  29. T. Mueller, R. G. Joergensen, and B. Meyer, “Estimation of soil microbial biomass C in the presence of living roots by fumigation-extraction,” Soil Biol. Biochem. 24, 179–181 (1992). https://doi.org/10.1016/0038-0717(92)90275-3

    Article  Google Scholar 

  30. M. Muneer and J. M. Oades, “The role of Ca-organic interactions in soil aggregate stability. 1. Laboratory studies with glucose-C-14, CaCO3 and CaSO4·H2O,” Aust. J. Soil Res. 27, 389–399 (1989). https://doi.org/10.1071/SR9890389

    Article  Google Scholar 

  31. M. Muneer and J. M. Oades, “The role of Ca-organic interactions in soil aggregate stability. 2. Field studies with C-14-labeled straw, CaCO3 and CaSO4·H2O,” Aust. J. Soil Res. 27, 401–409 (1989b). https://doi.org/10.1071/SR9890401

    Article  Google Scholar 

  32. E. Paget, L. J. Monrozier, and P. Simonet, “Adsorption of DNA on clay minerals: protection against DNase I and influence on gene transfer,” FEMS Microbiol. Lett. 97, 31–40 (1992). https://doi.org/10.1016/0378-1097(92)90359-V

    Article  Google Scholar 

  33. M. Semenov, E. Blagodatskaya, A. Stepanov, and Ya. Kuzyakov, “DNA-based determination of soil microbial biomass in alkaline and carbonaceous soils of semi-arid climate,” J. Arid Environ. 150, 54–61 (2018). https://doi.org/10.1016/j.jaridenv.2017.11.013

    Article  Google Scholar 

  34. M. Wiesmeier, L. Urbanski, E. Hobley, B. Lang, M. von Lützow, E. Marin-Spiotta, B. van Wesemael, E. Rabot, M. Liess, N. Garcia-Franco, U. Wollschläger, H.-J. Vogen, and I. Kögel-Knabner, “Soil organic carbon storage as a key function of soils - A review of drivers and indicators at various scales,” Geoderma 333, 149–162 (2019). https://doi.org/10.1016/j.geoderma.2018.07.026

    Article  Google Scholar 

  35. S. Yokoyama, K. Yuri, T. Nomi, M. Komine, S. Nakamura, H. Hattori, and H. Rai, “The high correlation between DNA and chloroform-labile N in various types of soil,” Appl. Soil Ecol. 117–118, 1–9 (2017). https://doi.org/10.1016/j.apsoil.2017.04.002

    Article  Google Scholar 

Download references

Funding

This study was supported by the Russian Science Foundation, grant no. 22-68-00010, https://rscf.ru/project/22-68-00010. Materials obtained during the work on state assignment no. 0191-2019-0046 were used in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Chernysheva.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by D. Konyushkov

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chernysheva, E.V., Fornasier, F. & Borisov, A.V. Factors for Conversion of the Content of Double-Stranded DNA to Carbon of Soil Microbial Biomass. Eurasian Soil Sc. 56, 672–681 (2023). https://doi.org/10.1134/S1064229323600021

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229323600021

Keywords:

Navigation