Skip to main content
Log in

Abundance and Diversity of Prokaryotic Communities of Dust Aerosol and Urban Soils in the Territory of Moscow

  • SOIL MICROBIOME UNDER THE CONDITIONS OF ANTHROPOGENIC IMPACT
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

A comprehensive quantitative and qualitative characterization of prokaryotic communities of solid atmospheric fallout (dust aerosol) and soils in the areas with different anthropogenic loads within the territory of Moscow was obtained. The total number of bacteria in the studied samples of solid atmospheric fallouts (SAF) was lower than the number of bacteria in soil samples; actinomycete mycelium was not found in dust samples, although it was found in soil samples. The number of culturable saprotrophic bacteria in dust samples was an order of magnitude lower than in Urbic Technosols taken at the same plots. Representatives of the genus Micrococcus dominated the culturable bacteria in the dust aerosols, while representatives of the phylum Proteobacteria dominated in soils. Representatives of the Enterobacteriaceae family were found in the dust samples, among which there were species that are potential human pathogens. The maximum biodiversity of bacteria of the Enterobacteriaceae family was recorded in the dust samples taken in areas with increased anthropogenic and transport load. The sanitary-indicative bacterium Escherichia coli was found in all samples of the dust and Urbic Technosols; its content varied from 10 to 100 CFU/g, which corresponds to the moderate degree of epidemic danger. Ecological indices calculated for prokaryotic communities in situ (barcoding of the 16S rRNA gene) indicate a lower taxonomic diversity of SAF prokaryotic communities in comparison with communities of closely spaced Urbic Technosols.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. K. A. Vinogradova, V. G. Bulgakova, A. N. Polin, and P. A. Kozhevin, “Resistance of microorganisms to antibiotics: resistome, its volume, diversity and development,” Antibiot. Khimioter. 58 (5–6), 38–48 (2013).

    Google Scholar 

  2. L. I. Vorob’eva, Archaea: Textbook for Universities (IKTs Akademkniga, Moscow, 2007) [in Russian].

  3. A. M. Glushakova, L. V. Lysak, A. B. Umarova, T. V. Prokof’eva, Yu. V. Podushin, G. S. Bykova, and L. P. Malukova, “Bacterial complexes of urbanozems in southern cities of Russia,” Eurasian Soil Sci. 54 (2), 257–263 (2021). https://doi.org/10.1134/S1064229321020058

    Article  Google Scholar 

  4. T. G. Dobrovol’skaya, Structure of Bacterial Communities in Soils (IKTs Akademkniga, Moscow, 2002) [in Russian].

  5. D. G. Zvyagintsev, Methods of Soil Microbiology and Biochemistry (Mosk. Univ., Moscow, 1991) [in Russian].

    Google Scholar 

  6. P. A. Kozhevin, Microbial Populations in Nature (Mosk. Univ., Moscow, 1989) [in Russian].

    Google Scholar 

  7. L. V. Lysak, Extended Abstract of Doctoral Dissertation in Biology (Moscow, 2010).

  8. L. V. Lysak, T. G. Dobrovol’skaya, and I. N. Skvortsova, Methods for Assessing the Bacterial Diversity of Soils and Identifying Soil Bacteria (MAKS Press, Moscow, 2003) [in Russian].

    Google Scholar 

  9. L. V. Lysak and E. V. Lapygina, “The diversity of bacterial communities in urban soils,” Eurasian Soil Sci. 51 (9), 1050–1056 (2018). https://doi.org/10.1134/S1064229318090077

    Article  Google Scholar 

  10. Methodological Recommendations FTs/4022 Methods for Microbiological Control of Soil.

  11. Methodological Instructions 2.1.7.730-99. Hygienic Evaluation of the Quality of Soil in Populated Areas.

  12. A. E. Magguran, Ecological Diversity and Its Measurement, Croom Helm, London, 1988. Translated under the title Ekologicheskoe raznoobrazie i ego izmereniya, Mir, Moscow, 1992.

  13. E. V. Pershina and T. I. Chernov, “The main physicochemical parameters of soils that determine the structure of the soil metagenome,” in Main Achievements and Prospects of Soil Metagenomics (2017), pp. 88–96 [in Russian].

  14. B. A. Revich, Climate, Atmospheric Air Quality and Health of Muscovites (Adamant’, Moscow, 2006) [in Russian].

    Google Scholar 

  15. I. A. Tikhonovich, T. I. Chernov, A. D. Zhelezova, A. K. Tkhakakhova, E. E. Andronov, and O. V. Kutovaya, “Taxonomic structure of prokaryotic soil communities in different bioclimatic zones,” Byull. Pochv. Inst. im. V. V. Dokuchaeva, No. 95, 125–153 (2018).

    Google Scholar 

  16. R. I. Aminov and R. I. Mackie, “Evolution and ecology of antibiotic resistance genes,” FEMS Microbiol. Lett. 271 (2), 147–161 (2007). https://doi.org/10.1111/j.1574-6968.2007.00757.x

    Article  Google Scholar 

  17. H. Arabaghian, T. Salloum, S. Alousi, B. Panossian, G. F. Araj, and S. Tokajian, “Molecular characterization of carbapenem resistant Klebsiella pneumoniae and Klebsiella quasipneumoniae isolated from Lebanon,” Sci. Rep. 9 (1), 1–12 (2019). https://doi.org/10.1038/s41598-018-36554-2

    Article  Google Scholar 

  18. R. Araújo, F. Vázquez Calderón, J. Sánchez López, I. C. Azevedo, A. Bruhn, S. Fluch, and J. Ullmann, “Current status of the algae production industry in Europe: an emerging sector of the blue bioeconomy,” Front. Mar. Sci. 7, 626389 (2021). https://doi.org/10.3389/fmars.2020.626389

    Article  Google Scholar 

  19. A. A. Belov, V. S. Cheptsov, N. A. Manucharova, and Z. S. Ezhelev, “Bacterial communities of Novaya Zemlya archipelago ice and permafrost,” Geosciences 10 (2), 67 (2020). https://doi.org/10.3390/geosciences10020067

    Article  Google Scholar 

  20. A. A. Belov, V. S. Cheptsov, E. A. Vorobyova, N. A. Manucharova, and Z. S. Ezhelev, “Stress-tolerance and taxonomy of culturable bacterial communities isolated from a central Mojave Desert soil sample,” Geosciences 9 (4), 166 (2019). https://doi.org/10.3390/geosciences9040166

    Article  Google Scholar 

  21. D. H. Bergey, Bergey’s Manual® of Systematic Bacteriology (Springer Science & Business Media, 2001).

    Google Scholar 

  22. D. Bulgarelli, R. Garrido-Oter, P. C. Münch, A. Weiman, J. Dröge, Y. Pan, and P. Schulze-Lefert, “Structure and function of the bacterial root microbiota in wild and domesticated barley,” Cell Host Microbe 17 (3), 392–403 (2015). https://doi.org/10.1016/j.chom.2015.01.011

    Article  Google Scholar 

  23. J. G. Caporaso, J. Kuczynski, J. Stombaugh, K. Bittinger, F. D. Bushman, E. K. Costello, R. Knight, “QIIME allows analysis of high-throughput community sequencing data,” Nat. Methods 7 (5), 335–336 (2010). https://doi.org/10.1038/nmeth.f.303

    Article  Google Scholar 

  24. J. M. Chaparro, D. Badri, and J. M. Vivanco, “Rhizosphere microbiome assemblage is affected by plant development,” ISME J. 8 (4), 790–803 (2014). https://doi.org/10.1038/ismej.2013.196

    Article  Google Scholar 

  25. R. Daniel, “The metagenomics of soil,” Nat. Rev. Microbiol. 3, 470–478 (2005). https://doi.org/10.1038/nrmicro1160

    Article  Google Scholar 

  26. A. Davin-Regli and J. M. Pagès, “Enterobacter aerogenes and Enterobacter cloacae; versatile bacterial pathogens confronting antibiotic treatment,” Front. Microbiol. 6, 392 (2015). https://doi.org/10.3389/fmicb.2015.00392

    Article  Google Scholar 

  27. J. de Bruyn, L. Nixon, M. Fawaz, M. Johnson, and M. Radosevich, “Global biogeography and quantitative season dynamics of Gemmatimonadetes in soil,” Appl. Environ. Microbiol. 77 (17), 6295–6300 (2011). https://doi.org/10.1128/AEM.05005-11

    Article  Google Scholar 

  28. V. R. Després, J. A. Huffman, S. M. Burrows, C. Hoose, A. Safatov, G. Buryak, and R. Jaenicke, “Primary biological aerosol particles in the atmosphere: a review,” Tellus B 64 (1), 15598 (2012). https://doi.org/10.3402/tellusb.v64i0.15598

    Article  Google Scholar 

  29. A. M. Glushakova, A. V. Kachalkin, T. V. Prokof’eva, and L. V. Lysak, “Enterobacteriaceae in soils and atmospheric dust aerosol accumulations of Moscow city,” Curr. Res. Microb. Sci. 3, 100124 (2022). https://doi.org/10.1016/j.crmicr.2022.100124

    Article  Google Scholar 

  30. A. Goel and P. Kumar, “Characterisation of nanoparticle emissions and exposure at traffic intersections through fast–response mobile and sequential measurements,” Atmos. Environ. 107, 374–390 (2015). https://doi.org/10.1016/j.atmosenv.2015.02.002

    Article  Google Scholar 

  31. F. Karagulian, C. A. Belis, C. F. C. Dora, A. M. Prüss-Ustun, S. Bonjour, H. Adair-Rohani, and M. Amann, “Contributions to cities' ambient particulate matter (PM): A systematic review of local source contributions at global level,” Atmos. Environ. 120, 475–483 (2015). https://doi.org/10.1016/j.atmosenv.2015.08.087

    Article  Google Scholar 

  32. S. Kumari and M. K. Jain, “A critical review on air quality index,” in Environmental Pollution, pp. 87–102. https://doi.org/10.1007/978-981-10-5792-2_8

  33. L. M. Luong, D. Phung, P. D. Sly, L. Morawska, and P. K. Thai, “The association between particulate air pollution and respiratory admissions among young children in Hanoi, Vietnam,” Sci. Total Environ. 578, 249–255 (2017). https://doi.org/10.1016/j.scitotenv.2016.08.012

    Article  Google Scholar 

  34. C. C. Phan, T. Q. H. Nguyen, M. K. Nguyen, K. H. Park, G. N. Bae, L. Seung-bok, and Q. Bach, “Aerosol mass and major composition characterization of ambient air in Ho Chi Minh City, Vietnam,” Int. J. Environ. Sci. Technol. 17 (6), 3189–3198 (2020). https://doi.org/10.1007/s13762-020-02640-0

    Article  Google Scholar 

  35. T. V. Prokof’eva, S. A. Shoba, L. V. Lysak, A. E. Ivanova, A. M. Glushakova, V. A. Shishkov, E. V. Lapygina, P. D. Shilaika, and A. A. Glebova, “Organic constituents and biota in the urban atmospheric solid aerosol: potential effects on urban soils,” Eurasian Soil Sci. 54 (10), 1532–1545 (2021). https://doi.org/10.1134/S1064229321100094

    Article  Google Scholar 

  36. T. V. Prokof’eva, A. V. Kiryushin, V. A. Shishkov, and F. A. Ivannikov, “The importance of dust material in urban soil formation: the experience on study of two young Technosols on dust depositions,” J. Soils Sediments 17 (2), 515–524 (2017). https://doi.org/10.1007/s11368-016-1546-7

    Article  Google Scholar 

  37. E. Pruesse, C. Quast, K. Knittel, B. M. Fuchs, W. Ludwig, J. Peplies, and F. O. Glöckner, “SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB,” Nucleic Acids Res. 35 (21), 7188–7196 (2007). https://doi.org/10.1093/nar/gkm864

    Article  Google Scholar 

  38. H. W. Stokes and M. R. Gillings, “Gene flow, mobile genetic elements and the recruitment of antibiotic resistance genes into Gram-negative pathogens,” FEMS Microbiol. Rev. 35 (5), 790–819 (2011). https://doi.org/10.1111/j.1574-6976.2011.00273.x

    Article  Google Scholar 

  39. M. Tourna, M. Stieglmeier, A. Spang, M. Könneke, A. Schintlmeister, T. Urich, and C. Schleper, “Nitrososphaera viennensis, an ammonia oxidizing archaeon from soil,” Proc. Natl. Acad. Sci. U. S. A. 108 (20), 8420–8425 (2011). https://doi.org/10.1073/pnas.1013488108

    Article  Google Scholar 

  40. D. Vlasov, N. Kosheleva, and N. Kasimov, “Spatial distribution and sources of potentially toxic elements in road dust and its PM10 fraction of Moscow megacity,” Sci. Total Environ. 761, 143267 (2021). https://doi.org/10.1016/j.scitotenv.2020.143267

    Article  Google Scholar 

  41. World Health Organization. Air Quality Guidelines for Europe. World Health Organization (Regional Office for Europe, 2000).

Download references

Funding

This study was carried out within the framework of the program of the Interdisciplinary Scientific and Educational School of the Lomonosov Moscow State University Future of the Planet and Global Environmental Changes with financial support from the Russian Foundation for Basic Research, project no. 19-05-50093 (Microworld).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. V. Lysak.

Ethics declarations

The authors declare that they have not conflicts of interest.

Additional information

Translated by T. Chicheva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lysak, L.V., Shoba, S.A., Prokof’eva, T.V. et al. Abundance and Diversity of Prokaryotic Communities of Dust Aerosol and Urban Soils in the Territory of Moscow. Eurasian Soil Sc. 56, 663–671 (2023). https://doi.org/10.1134/S106422932360001X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106422932360001X

Keywords:

Navigation