Skip to main content
Log in

Environmental Variables in Predictive Soil Mapping: A Review

  • GENESIS AND GEOGRAPHY OF SOILS
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

In the well-known conceptual model SCORPAN, a given soil property is considered as dependent on the following environmental factors: soil, climate, organisms, topography, time, and space. Predictive mapping of soils in digital soil mapping is based on similar ideas, but environmental factors may include not only factors of soil formation, but also, for example, remote sensing data. At present, predictive mapping has found wide application not only in soil science but also in ecology, agriculture, and geomorphology. This paper provides a review of environmental factors that are used in predictive mapping with a special attention to situations, when wide sets of environmental factors may be used and a part of them are not quantitative, such as vegetation types. The systems of quantitative variables for topography and climate description are most developed, so special attention is paid to them. Land surface description is performed using both local and non-local variables that need integration. In climate description, variables, which give estimates of dry or wet terrain features, such as moisture ratio or water deficit, are essential. They need evaluation of potential evapotranspiration that is not measured by weather stations, but can be calculated. The possibilities of accounting for these and other environmental factors, including non-quantitative ones, in quantitative statistical models of predictive mapping are described together with principles of their construction, verification, comparison, and choice of appropriate models. Examples of predictive soil mapping applications are given for various scales, and their specificity for different scales is outlined. Some aspects of remote sensing data usage are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. A. O. Alekseev, G. V. Mitenko, and P. A. Sharyi, “Quantitative estimates of paleoenvironmental changes in the Late Holocene in the south of the East European Plain as recorded in the magnetic properties of soils,” Eurasian Soil Sci. 53 (12), 1677–1686 (2020). https://doi.org/10.1134/S1064229320120029

    Article  Google Scholar 

  2. S. A. Bartalev, V. A. Egorov, V. O. Zharko, E. A. Lupyan, D. E. Plotnikov, S. A. Khvostikov, and N. V. Shabanov, Satellite Mapping of the Vegetation Cover of Russia (Inst. Kosm. Issled. Ross. Akad. Nauk, Moscow, 2016) [in Russian].

    Google Scholar 

  3. M. I. Budyko, Thermal Balance of the Earth’s Surface (Gidrometeoizdat, Leningrad, 1956) [in Russian].

    Google Scholar 

  4. K. F. Gauss, “General studies about curved surfaces,” in On the Foundations of Geometry (Gos. Izd. Tekh.-Teor. Lit., Moscow, 1956), pp. 123–161 [in Russian].

    Google Scholar 

  5. V. V. Dokuchaev, “Russian chernozem,” in Selected Writings (Sel’khozgiz, Moscow, 1948), Vol. 1 [in Russian].

    Google Scholar 

  6. N. N. Ivanov, “Landscape and climatic regions of the globe,” in Papers of the Geographical Society (Moscow–Leningrad, 1948), Vol. 1 [in Russian].

  7. A. G. Isachenko, Landscape Science and Physical-Geographical Zoning (Vysshaya Shkola, Moscow, 1991) [in Russian].

    Google Scholar 

  8. F. I. Kozlovskii, “Soil individual and methods for its determination,” in Regularities of Spatial Variation of Soil Properties and Information-Statistical Methods for Their Study (Nauka, Moscow, 1970), pp. 42–59 [in Russian].

    Google Scholar 

  9. I. F. Kuzyakova, V. A. Romanenkov, and Ya. V. Kuzyakov, “Method of geostatistics in soil-agrochemical studies,” Pochvovedenie, No. 9, 1132–1139 (2001).

    Google Scholar 

  10. L. T. Matveev, Course of General Meteorology. Atmospheric Physics (Gidrometeoizdat, Leningrad, 1984) [in Russian].

    Google Scholar 

  11. P. S. Pogrebnyak, General Forestry (Kolos, Moscow, 1968) [in Russian].

    Google Scholar 

  12. I. A. Ryl’skii, “Laser scanning and digital aerial photography: a new level of detail,” Geomatics, No. 4, 53–56 (2015).

    Google Scholar 

  13. I. N. Stepanov, I. V. Florinskii, and P. A. Sharyi, “On the conceptual scheme of landscape studies,” in Geometry of Earth Surface Structures (Pushchino, 1991), pp. 9–15 [in Russian].

  14. P. A. Sharyi, “Topographic method of second derivatives,” in Geometry of Earth Surface Structures (Pushchino, 1991), pp. 28–58 [in Russian].

  15. P. A. Sharyi, O. V. Rukhovich, and L. S. Sharaya, “Methodology for the analysis of spatial variability of wheat yield characteristics depending on the conditions of the agricultural landscape,” Agrokhimiya, No. 2, 57–81 (2011).

    Google Scholar 

  16. P. A. Sharyi, O. V. Rukhovich, and L. S. Sharaya, “Predictive modeling of winter wheat yield characteristics,” in Digital Soil Cartography: Theoretical and Experimental Studies (Pochv. Inst. im. V. V. Dokuchaeva, Moscow, 2012), pp. 310–326 [in Russian].

  17. P. A. Shary and D. L. Pinskii, “Statistical evaluation of the relationships between spatial variability in the organic carbon content in gray forest soils, soil density, concentrations of heavy metals, and topography,” Eurasian Soil Sci. 46 (11), 1076–1087 (2013). https://doi.org/10.1134/S1064229313090044

    Article  Google Scholar 

  18. P. A. Shary and N. S. Smirnov, “Mechanisms of the effects of solar radiation and terrain anisotropy on the vegetation of dark conifer forests in the Pechora-Ilych state biosphere reserve,” Russ. J. Ecol. 44 (1), 9–17 (2013). https://doi.org/10.1134/S1067413613010116

    Article  Google Scholar 

  19. P. A. Sharyi, L. S. Sharaya, and L. V. Sidyakina, “Relationship between NDVI forests and climate characteristics of the Volga basin,” Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa 17 (4), 154–163 (2020). https://doi.org/10.21046/2070-7401-2020-17-4-154-163

    Article  Google Scholar 

  20. D. G. Schepaschenko, L. V. Mukhortova, A. Z. Shvidenko, and E. F. Vedrova, “The pool of organic carbon in the soils of Russia,” Eurasian Soil Sci. 46 (2), 107–116 (2013). https://doi.org/10.1134/S1064229313020129

    Article  Google Scholar 

  21. R. G. Allen, L. S. Pereira, D. Raes, and M. Smith, Crop Evapotranspiration (Quides for Computing Crop Water Requirements). FAO Irrigation and Drainage Paper No. 56 (1998).

  22. A. Baltensweiler, L. Walthert, C. Ginzler, F. Sutter, R. S. Purves, and M. Hanewinkel, “Terrestrial laser scanning improves digital elevation models and topsoil pH modelling in regions with complex topography and dense vegetation,” Environ. Modell. Software 95, 13–21 (2017).

    Article  Google Scholar 

  23. C. M. Beale, J. J. Lennon, J. M. Yearsley, M. J. Brewer, and D. A. Elston, “Regression analysis of spatial data,” Ecol. Lett. 13 (2), 246–264 (2010).

    Article  Google Scholar 

  24. T. W. Beers, P. E. Dress, and L. C. Wensel, “Aspect transformation in site productivity research,” J. For. 64, 691–692 (1966).

    Google Scholar 

  25. J. Besag, “Spatial interaction and the statistical analysis of lattice systems,” J. R. Stat. Soc. Ser. B. 36 (2), 192–236 (1974).

    Google Scholar 

  26. T. Behrens, H. Forster, T. Scholten, U. Steinrucken, E.-D. Spies, and M. Goldschmitt, “Digital soil mapping using artificial neural networks,” J. Plant Nutr. Soil Sci. 168 (1), 21–33 (2005).

    Article  Google Scholar 

  27. K. J. Beven and M. J. Kirkby, “A physically based, variable contributing area model of basin hydrology,” Hydrol. Sci. Bull. 24 (1), 43–69 (1979).

    Article  Google Scholar 

  28. M. P. Bishop, L. A. James, Jr. J. F. Shroder, and S. J. Walsh, “Geospatial technologies and digital geomorphological mapping: concepts, issues and research,” Geomorphology 137, 5–26 (2012).

    Article  Google Scholar 

  29. C. F. Dormann, J. M. McPherson, M. B. Araujo, R. Bivand, J. Bolliger, G. Carl, R. G. Davies, A. Hirzel, W. Jetz, W. D. Kissling, I. Kuhn, R. Ohlemuller, P. R. Peres-Neto, B. Reineking, B. Schroder, F. M. Schurr, and R. Wilson, “Methods to account for spatial autocorrelation in the analysis of species distributional data: a review,” Ecography 30 (5), 609–628 (2007).

    Article  Google Scholar 

  30. I. S. Evans, “General geomorphometry, derivatives of altitude, and descriptive statistics,” in Spatial Analysis in Geomorphology (Methuen & Co., Ltd., London, 1972), Ch. 2, pp. 17–90.

    Google Scholar 

  31. J. Franklin, “Predictive vegetation mapping: geographic modelling of biospatial patterns in relation to environmental gradients,” Prog. Phys. Geogr. 19 (4), 474–499 (1995).

    Article  Google Scholar 

  32. T. G. Freeman, “Calculating catchment area with divergent flow based on a regular grid,” Comput. Geosci. 17 (3), 413–422 (1991).

    Article  Google Scholar 

  33. R. Grimm, T. Behrens, M. Märker, and H. Elsenbeer, “Soil organic carbon concentrations and stocks on Barro Colorado Island – Digital soil mapping using Random Forests analysis,” Geoderma 146, 102–113 (2008).

    Article  Google Scholar 

  34. S. Yu. Grishin, “The boreal forests of north-eastern Eurasia,” Vegetatio 121, 11–21 (1995).

    Article  Google Scholar 

  35. A. Guisan and N. E. Zimmermann, “Predictive habitat distribution models in ecology,” Ecol. Modell. 135 (2–3), 147–186 (2000).

    Article  Google Scholar 

  36. B. A. Hawkins, M. A. Rodriguez, and S. G. Weller, “Global angiosperm family richness revisited: linking ecology and evolution to climate,” J. Biogeogr. 38, 1253–1266 (2011).

    Article  Google Scholar 

  37. R. J. Hijmans, S. E. Cameron, J. L. Parra, P. J. Jones, and A. Jarvis, “Very high resolution interpolated climate surfaces for global land areas,” Int. J. Climatol. 25 (15), 1965–1978 (2005).

    Article  Google Scholar 

  38. J. Hjort and M. Marmion, “Effects of sample size on the accuracy of geomorphological models,” Geomorphology 102, 341–350 (2008).

    Article  Google Scholar 

  39. D. W. Hosmer and S. Lemeshow, Applied Logistic Regression (John Wiley & Sons, Inc., New York, 2000).

    Book  Google Scholar 

  40. T. Hwang, C. Song, J. M. Vose, and L. E. Band, “Topography-mediated controls on local vegetation phenology estimated from MODIS vegetation index,” Landscape Ecol. 26, 541–556 (2011).

    Article  Google Scholar 

  41. D. King, H. Bourennane, M. Isampert, and J. J. Macaire, “Relationship of the presence of a non-calcareous clay-loam horizon to DEM attributes in a gently sloping area,” Geoderma 89 (1–2), 95–111 (1999).

    Article  Google Scholar 

  42. P. V. Krestov, A. M. Omelko, and Y. Nakamura, “Phytogeography of higher units of forests and krummholz in North Asia and formation of vegetation complex in the Holocene,” Phytocoenologia 40, 41–56 (2010).

    Article  Google Scholar 

  43. K. Lim, P. Treitz, M. Wulder, B. St-Onge, and M. Flood, “LiDAR remote sensing of forest structure,” Prog. Phys. Geogr. 27, 88–106 (2003).

    Article  Google Scholar 

  44. H. Lischke, A. Guisan, A. Fischlin, and H. Bugmann, “Vegetation responses to climate change in the Alps - Modeling studies,” in A View from the Alps: Regional Perspectives on Climate Change (MIT Press, Bostonm 1998), Ch. 6, pp. 309–350.

  45. J. A. Lutz, J. W. van Wagtendonk, and J. F. Franklin, “Climatic water deficit, tree species ranges, and climate change in Yosemite National Park,” J. Biogeogr. 37, 936–950 (2010).

    Article  Google Scholar 

  46. R. A. MacMillan and P. A. Shary, “Landforms and landform elements in geomorphometry,” in Geomorphometry: Concepts, Software, Applications. Developments in Soil Science (Elsevier, Amsterdam, 2009), Vol. 33, Ch. 9, pp. 227–254.

    Google Scholar 

  47. L. W. Martz and E. de Jong, “CATCH: a Fortran program for measuring catchment area from digital elevation models,” Comput. Geosci. 14 (5), 627–640 (1988).

    Article  Google Scholar 

  48. A. B. McBratney, I. O. A. Odeh, T. F. A. Bishop, M. S. Dunbar, and T. M. Shatar, “An overview of pedometric techniques for use in soil survey,” Geoderma 97 (3–4), 293–327 (2000).

    Article  Google Scholar 

  49. A. B. McBratney, M. L. Mendonca Santos, and B. Minasny, “On digital soil mapping,” Geoderma 117 (1–2), 3–52 (2003).

    Article  Google Scholar 

  50. N. J. McKenzie and P. J. Ryan, “Spatial prediction of soil properties using environmental correlation,” Geoderma 89 (1–2), 67–94 (1999).

    Article  Google Scholar 

  51. H. Mitašová and J. Hofierka, “Interpolation by regularized spline with tension. II. Application to terrain modeling and surface geometry analysis,” Math. Geol. 25 (6), 657–669 (1993).

    Article  Google Scholar 

  52. D. C. Montgomery and E. A. Peck, Introduction to Linear Regression Analysis (John Wiley & Sons, New York, 1982).

    Google Scholar 

  53. D. Moser, S. Dullinger, T. Englisch, H. Niklfeld, C. Plutzar, N. Sauberer, H. G. Zechmeister, and G. Grabherr, “Environmental determinants of vascular plant species richness in the Austrian Alps,” J. Biogeogr. 32, 1117–1127 (2005).

    Article  Google Scholar 

  54. R. J. Pike, I. S. Evans, and T. Hengl, “Geomorphometry: a brief guide,” in Geomorphometry: Concepts, Software, Applications. Developments in Soil Science (Elsevier, Amsterdam, 2009), Vol. 33, Ch. 1, pp. 3–30.

    Google Scholar 

  55. K. B. Pierce Jr., T. Lookingbill, and D. Urban, “A simple method for estimating potential relative radiation (PRR) for landscape-scale vegetation analysis,” Landscape Ecol. 20 (2), 137–147 (2005).

    Article  Google Scholar 

  56. P. Scull, J. Franklin, O. A. Chadwick, and D. McArthur, “Predictive soil mapping: a review,” Prog. Phys. Geogr. 27 (2), 171–197 (2003).

    Article  Google Scholar 

  57. P. A. Shary, “Land surface in gravity points classification by a complete system of curvatures,” Math. Geol. 27 (3), 373–390 (1995).

    Article  Google Scholar 

  58. P. A. Shary, L. S. Sharaya, and A. V. Mitusov, “Fundamental quantitative methods of land surface analysis,” Geoderma 107 (1–2), 1–32 (2002).

    Article  Google Scholar 

  59. P. A. Shary, L. S. Sharaya, and O. V. Rukhovich, “Model-based forecasting winter wheat yields using landscape and climate data,” in Landscape Modelling and Decision Support (Springer Nature Switzerland AG, Switzerland, 2020), Ch. 20, pp. 383–396.

    Google Scholar 

  60. N. L. Stephenson, “Actual evapotranspiration and deficit: biologically meaningful correlates of vegetation distribution across spatial scales,” J. Biogeogr. 25, 855–870 (1998).

    Article  Google Scholar 

  61. A. L. Thomas, D. King, E. Dambrine, A. Couturier, and J. Roque, “Predicting soil classes with parameters derived from relief and geologic materials in a sandstone region of the Vosges mountains (Northeastern France),” Geoderma 90 (3–4), 291–305 (1999).

    Article  Google Scholar 

  62. J. A. Thompson, J. C. Bell, and C. A. Butler, “Digital elevation model resolution: effects on terrain attribute calculation and quantitative soil-landscape modeling,” Geoderma 100, 67–89 (2001).

    Article  Google Scholar 

  63. C. W. Thornthwaite, “An approach toward a rational classification of climate,” Geogr. Rev. 38 (1), 55–94 (1948).

    Article  Google Scholar 

  64. F. R. Troeh, “Landform parameters correlated to soil drainage,” Soil Sci. Soc. Am. Proc. 28 (6), 808–812 (1964).

    Article  Google Scholar 

  65. R. A. Viscarra Rossel and E. N. Bui, “A new detailed map of total phosphorus stocks in Australian soil,” Sci. Total Environ. 542, 1040–1049 (2016).

    Article  Google Scholar 

  66. R. A. Viscarra Rossel, D. J. Brus, C. Lobsey, Z. Shi, and G. McLachlan, “Baseline estimates of soil organic carbon by proximal sensing: comparing design-based, model-assisted and model-based inference,” Geoderma 265, 152–163 (2016).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. A. Shary.

Additional information

Translated by T. Chicheva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shary, P.A. Environmental Variables in Predictive Soil Mapping: A Review. Eurasian Soil Sc. 56, 247–259 (2023). https://doi.org/10.1134/S1064229322602384

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229322602384

Keywords:

Navigation