Skip to main content
Log in

Changes in the Phosphate Regime of Soils in the Middle Taiga under the Impact of Biochar

  • AGRICULTURAL CHEMISTRY AND SOIL FERTILITY
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

The influence of wood biochar on the contents of various forms of phosphates was studied in laboratory experiments on soils with different phosphorus availability. Soils of the middle taiga subzone of Karelia were used in this work: a sandy Umbric Podzol and a heavy loamy Umbric Retisol. The tests studied the effect of two fractions of biochar (3–5 and ≤2 mm) applied at the rates of 2 and 5% of the soil mass on pHKCl, the content of available and total phosphorus, the inorganic phosphorus fractions (Chang–Jackson method), and the total phosphatase activity of soils, as well as the effect of separate and combined application of biochar and fertilizer (NPK) on the content of available phosphorus in a pot experiment with spring barley. The research revealed that biochar significantly increased the content of available phosphorus (by 20–40%); increased the contents of the fractions of Ca-bounded P, Al-bounded P, and loosely bounded P; and also increased the phosphatase activity in the Umbric Podzol. In pot experiments, a higher content of P2O5 was noted in variants with biochar ≤2 mm, in variants with fertilizer, and with combined application of biochar and fertilizer. Biochar increased the content of available phosphorus by 2–6%, increased the content of Ca-bounded P and loosely bounded P (with biochar ≤2 mm at 5% dosage), and had no significant effect on the phosphatase activity in the Umbric Retisol. Only combination of biochar ≤2 mm and fertilizer had a significant effect on the content of P2O5 in pot experiment with Umbric Retisol. In general, the most noticeable effect on almost all studied indicators was provided by ≤2 mm fraction of biochar in a 5% dosage. The use of biochar led to a statistically significant increase in pHKCl values and did not affect the content of total phosphorus in both soils. Biochar had a greater effect on the phosphate regime of coarse-textured soil with an initially lower pH and a lower content of available and total phosphorus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. I. A. Dubrovina, “Dynamics of the physicochemical properties of soddy-podzolic soils with the introduction of biochar,” Probl. Agrokhim. Ekol., No. 2, 19–23 (2019). https://doi.org/10.26178/AE.2019.51.56.004

  2. I. A. Dubrovina, M. G. Yurkevich, and V. A. Sidorova, “Influence of biochar and fertilizers on the development of barley plants and agrochemical parameters of soddy-podzolic soils in a growing experiment,” Tr. Karel. Nauchn. Tsentra Ross. Akad. Nauk, No. 3, 31–44 (2020). https://doi.org/10.17076/eb1087

    Article  Google Scholar 

  3. N. N. Kashirskaya, L. N. Plekhanova, E. V. Chernisheva, M. V. Eltsov, S. N. Udaltsov, and A. V. Borisov, “Temporal and spatial features of phosphatase activity in natural and human-transformed soils,” Eurasian Soil Sci. 53 (1), 97–109 (2020). https://doi.org/10.1134/S1064229320010093

    Article  Google Scholar 

  4. N. A. Kirpichnikov, “Influence of lime on the phosphate regime of poorly cultivated soddy-podzolic soil with long-term use of fertilizers,” Agrokhimiya, No. 12, 3–8 (2016).

    Google Scholar 

  5. A. Yu. Kudeyarova, “Chemisorption of phosphate ions and destruction of organomineral sorbents in acid soils,” Eurasian Soil Sci. 43 (6), 635–650 (2010).

    Article  Google Scholar 

  6. I. V. Lyskova, O. N. Rylova, N. A. Veselkova, and T. V. Lyskova, “Influence of fertilizers and lime on agrochemical parameters and phosphate regime of soddy-podzolic medium loamy soil,” Agrar. Nauka Evro-Sev.-Vostoka, No. 2(45), 27–31 (2015). https://doi.org/10.30766/2072-9081.2015.45.2.27-32

    Article  Google Scholar 

  7. V. G. Mineev, A. A. Kovalenko, A. V. Vaulin, and R. A. Afanas’ev, “Effect of phosphate fertilizers on the agrochemical properties of soddy-podzolic soil and crop yields,” Agrokhimiya, No. 10, 3–10 (2009).

    Google Scholar 

  8. E. M. Mitrofanova and M. T. Vasbieva, “Phosphate regime of soddy-podzolic soil with long-term use of organic and mineral fertilizers,” Agrokhimiya, No. 9, 13–19 (2014).

    Google Scholar 

  9. L. A. Mikhailova and L. V. Derbeneva, “Influence of liming on the phosphate regime of soddy-podzolic soils of different degree of cultivation,” Agrar. Nauka Evro-Sev.-Vostoka, No. 10, 28–32 (2007).

    Google Scholar 

  10. D. S. Orlov, Soil Chemistry (Mosk. Univ., Moscow, 1992) [in Russian].

    Google Scholar 

  11. Yu. A. Potatueva, “Ecological and agrochemical evaluation of phosphorus and phosphorus-containing fertilizers in long-term field experiments,” Agrokhimiya, No. 6, 83–94 (2013).

    Google Scholar 

  12. N. E. Samsonova and S. N. Rodchenkov, “The use of fertilizers with reduced solubility of the phosphate component and the phosphate state of soddy-podzolic soils,” Agrokhimiya, No. 9, 24–31 (2007).

    Google Scholar 

  13. Theory and Practice of Chemical Analysis of Soils, Ed. by L. A. Vorob’eva (GEOS, Moscow, 2006) [in Russian].

    Google Scholar 

  14. F. Kh. Khaziev, Methods of Soil Enzymology (Nauka, Moscow, 2005) [in Russian].

    Google Scholar 

  15. S. A. Shafran and N. A. Kirpichnikov, “Scientific basis for predicting the content of mobile forms of phosphorus and potassium in soils,” Agrokhimiya, No. 4, 3–10 (2019). https://doi.org/10.1134/S0002188119040112

    Article  Google Scholar 

  16. S. H. Bai, N. Omidvar, M. Gallart, W. Kämper, I. Tahmasbian, M. B. Farrar, K. Singh, G. Zhou, B. Muqadass, C.-Y. Xu, R. Koech, Y. Li, T. T. N. Nguyen, and L. van Zwieten, “Combined effects of biochar and fertilizer applications on yield: a review and meta-analysis,” Sci. Total Environ. 808, 152073 (2022). https://doi.org/10.1016/j.scitotenv.2021.152073

    Article  Google Scholar 

  17. M. L. Bornø, D. S. Müller-Stöver, and F. Liu, “Contrasting effects of biochar on phosphorus dynamics and bioavailability in different soil types,” Sci. Total Environ. 627, 963–974 (2018). https://doi.org/10.1016/j.scitotenv.2018.01.283

    Article  Google Scholar 

  18. M. Chen, N. Alim, Y. Zhang, N. Xu, and X. Cao, “Contrasting effects of biochar nanoparticles on the retention and transport of phosphorus in acidic and alkaline soils,” Environ. Pollut. 239, 562–570 (2018). https://doi.org/10.1016/j.envpol.2018.04.050

    Article  Google Scholar 

  19. Z. Dai, X. Zhang, C. Tang, N. Muhammad, J. Wu, P. C. Brookes, and J. Xu, “Potential role of biochars in decreasing soil acidification—a critical review,” Sci. Total Environ. 581–582, 601–611 (2017). https://doi.org/10.1016/j.scitotenv.2016.12.169

    Article  Google Scholar 

  20. B. Dume, D. A. Tessema, A. Regassa, and G. Berecha, “Effects of biochar on phosphorus sorption and desorption in acidic and calcareous soils,” Civ. Environ. Res. 9 (5), 10–20 (2017).

    Google Scholar 

  21. J. O. Eduah, E. K. Nartey, M. K. Abekoe, H. Breuning-Madsen, and M. N. Andersen, “Phosphorus retention and availability in three contrasting soils amended with rice husk and corn cob biochar at varying pyrolysis temperatures,” Geoderma 341, 10–17 (2019). https://doi.org/10.1016/j.geoderma.2019.01.016

    Article  Google Scholar 

  22. S. Gao and T. H. DeLuca, “Wood biochar impacts soil phosphorus dynamics and microbial communities in organically-managed croplands,” Soil Biol. Biochem. 126, 144–150 (2018). https://doi.org/10.1016/j.soilbio.2018.09.002

    Article  Google Scholar 

  23. S. Gao, T. H. DeLuca, and C. C. Cleveland, “Biochar additions alter phosphorus and nitrogen availability in agricultural ecosystems: a meta-analysis,” Sci. Total Environ. 654, 463–472 (2019). https://doi.org/10.1016/j.scitotenv.2018.11.124

    Article  Google Scholar 

  24. L. Ghodszad, A. Reyhanitabar, M. R. Maghsoodi, B. A. Lajayer, and S. X. Chang, “Biochar affects the fate of phosphorus in soil and water: a critical review,” Chemosphere 283, 131176 (2021). https://doi.org/10.1016/j.chemosphere.2021.131176

    Article  Google Scholar 

  25. L. Ghodszad, A. Reyhanitabar, S. Oustan, and L. Alidokht, “Phosphorus sorption and desorption characteristics of soils as affected by biochar,” Soil Tillage Res. 216, 105251 (2022). https://doi.org/10.1016/j.still.2021.105251

    Article  Google Scholar 

  26. B. Glaser and V.-I. Lehr, “Biochar effects on phosphorus availability in agricultural soils: a meta-analysis,” Sci. Rep. 9, 1–9 (2019). https://doi.org/10.1038/s41598-019-45693-z

    Article  Google Scholar 

  27. L. He, Z. Zhong, and H. Yang, “Effects on soil quality of biochar and straw amendment in conjunction with chemical fertilizers,” J. Integr. Agric. 16 (3), 704–712 (2017). https://doi.org/10.1016/S2095-3119(16)61420-X

    Article  Google Scholar 

  28. S. Liu, J. Meng, L. Jiang, X. Yang, Y. Lan, X. Cheng, and W. Chen, “Rice husk biochar impacts soil phosphorous availability, phosphatase activities and bacterial community characteristics in three different soil types,” Appl. Soil Ecol. 116, 12–22 (2017). https://doi.org/10.1016/j.apsoil.2017.03.020

    Article  Google Scholar 

  29. S. O. Oladele, A. J. Adeyemo, and M. A. Awodun, “Influence of rice husk biochar and inorganic fertilizer on soil nutrients availability and rainfed rice yield in two contrasting soils,” Geoderma 336, 1–11 (2019). https://doi.org/10.1016/j.geoderma.2018.08.025

    Article  Google Scholar 

  30. L.-M. Raboin, A. H. D. Razafimahafaly, M. B. Rabenjarisoa, B. Rabary, J. Dusserre, and T. Becquer, “Improving the fertility of tropical acid soils: liming versus biochar application? A long term comparison in the highlands of Madagascar,” Field Crops Res. 199, 99–108 (2016). https://doi.org/10.1016/j.fcr.2016.09.005

    Article  Google Scholar 

  31. R. B. A. Rafael, M. L. Fernandez-Marcos, S. Cocco, M. L. Ruello, F. Fornasier, and G. Corti, “Increased phosphorus availability to corn resulting from the simultaneous applications of phosphate rock, calcareous rock, and biochar to an acid sandy soil,” Pedosphere 30 (6), 719–733 (2020). https://doi.org/10.1016/S1002-0160(20)60034-0

    Article  Google Scholar 

  32. V. Sachdeva, N. Hussain, B. R. Husk, and J. K. Whalen, “Biochar-induced soil stability influences phosphorus retention in a temperate agricultural soil,” Geoderma 351, 71–75 (2019). https://doi.org/10.1016/j.geoderma.2019.05.029

    Article  Google Scholar 

  33. P. Tammeorg, A. Simojoki, P. Makela, F. L. Stoddard, L. Alakukku, and J. Helenius, “Short-term effects of biochar on soil properties and wheat yield formation with meat bone meal and inorganic fertilizer on a boreal loamy sand,” Agric., Ecosyst. Environ. 191, 108–116 (2014). https://doi.org/10.1016/j.agee.2014.01.007

    Article  Google Scholar 

  34. T. Wang, M. Camps-Arbestain, M. Hedley, and P. Bishop, “Predicting phosphorus bioavailability from high-ash biochars,” Plant Soil 357, 173–187 (2012). https://doi.org/10.1007/s11104-012-1131-9

    Article  Google Scholar 

  35. X. Wei, Y. Hu, B. S. Razavi, J. Zhou, J. Shen, P. Nannipieri, J. Wu, and T. Ge, “Rare taxa of alkaline phosphomonoesterase-harboring microorganisms mediate soil phosphorus mineralization,” Soil Biol. Biochem. 131, 62–70 (2019). https://doi.org/10.1016/j.soilbio.2018.12.025

    Article  Google Scholar 

  36. G. Xu, J. Sun, H. Shao, and S. X. Chang, “Biochar had effects on phosphorus sorption and desorption in three soils with differing acidity,” Ecol. Eng. 62, 54–60 (2014). https://doi.org/10.1016/j.ecoleng.2013.10.027

    Article  Google Scholar 

  37. C. Yang and S. Lu, “Straw and straw biochar differently affect phosphorus availability, enzyme activity and microbial functional genes in an Ultisol,” Sci. Total Environ. 805, 150325 (2022). https://doi.org/10.1016/j.scitotenv.2021.150325

    Article  Google Scholar 

  38. F. Yang, L. Sui, C. Tang, J. Li, K. Cheng, and Q. Xue, “Sustainable advances on phosphorus utilization in soil via addition of biochar and humic substances,” Sci. Total Environ. 768, 145106 (2021). https://doi.org/10.1016/j.scitotenv.2021.145106

    Article  Google Scholar 

  39. L. Yang, Y. Wu, Y. Wang, W. An, J. Jin, K. Sun, and X. Wang, “Effects of biochar addition on the abundance, speciation, availability, and leaching loss of soil phosphorus,” Sci. Total Environ. 758, 143657 (2021). https://doi.org/10.1016/j.scitotenv.2020.143657

    Article  Google Scholar 

  40. L. Zhai, Z. Caiji, J. Liu, H. Wang, T. Ren, X. Gai, B. Xi, and H. Liu, “Short-term effects of maize residue biochar on phosphorus availability in two soils with different phosphorus sorption capacities,” Biol. Fertil. Soils. 51, 113–122 (2015). https://doi.org/10.1007/s00374-014-0954-3

    Article  Google Scholar 

  41. M. Zhang, G. Cheng, H. Feng, B. Sun, Y. Zhao, H. Chen, J. Chen, M. Dyck, X. Wang, J. Zhang, and A. Zhang, “Effects of straw and biochar amendments on aggregate stability, soil organic carbon, and enzyme activities in the Loess Plateau, China,” Environ. Sci. Pollut. Res. 24, 10108–10120 (2017). https://doi.org/10.1007/s11356-017-8505-8

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

I express thanks to Т.V. Bogdanova for assistance in carrying out analytical work.

Funding

The work was carried out within the framework of state assignment of the Karelian Research Center, Russian Academy of Sciences (project no. FMEN-2022-0012) using analytical equipment of Core Facility of the Karelian Research Center, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Dubrovina.

Additional information

Translated by T. Chicheva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dubrovina, I.A. Changes in the Phosphate Regime of Soils in the Middle Taiga under the Impact of Biochar. Eurasian Soil Sc. 56, 363–370 (2023). https://doi.org/10.1134/S1064229322602293

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229322602293

Keywords:

Navigation