Skip to main content
Log in

Effect of Fresh Organic Matter of Straw on Microbiological Parameters of Soddy-Podzolic Soil

  • AGRICULTURAL MICROBIOLOGY
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

The loss of soil organic matter (SOM) due to agricultural land use has a negative impact on soil properties and is one of the major contributors to the increase in atmospheric CO2 concentrations. An appropriate way for simultaneous restoration of SOM stocks and deposition of sequestered carbon is the straw application into the soil. The aim of the study was to evaluate the effect of straw application on the quantitative indicators of different groups of microorganisms in a soddy-podzolic soil (Umbric Retisol) in a long-term field experiment. Straw application increased microbial biomass carbon (Cmic) by 1.25–2 times, with the greatest increase in microbial biomass in trials without mineral fertilizer. Basal respiration and metabolic quotient (qCO2) increased in the sequence: control < NPK < NPK + straw < straw. Application of straw increased the gene copy number of fungi and bacteria up to 2 times and archaea up to 1.5 times. Application of mineral fertilizers without straw reduced qCO2, fungi biomass, and archaeal gene copy number by 1.5–3.0 times. The fungi/bacteria ratio varied from 4 to 15 as determined by the fluorescent microscopy and from 0.17 to 0.33 as determined by quantitative PCR. The lowest values of fungi/bacteria ratios were found in soils with the application of mineral fertilizers, and the highest ones, in soils with the straw application. Thus, the regular application of fresh organic matter of straw is an important technological procedure to increase the soil microbiological activity and mitigate the negative impact of mineral fertilizers on soil microbiota.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. N. D. Anan’eva, E. V. Blagodatskaya, and T. S. Demkina, “Estimating the resistance of soil microbial complexes to natural and anthropogenic impacts,” Eurasian Soil Sci. 35 (5), 514–521 (2002).

    Google Scholar 

  2. N. D. Ananyeva, E. V. Stolnikova, E. A. Susyan, and A. K. Khodzhaeva, “The fungal and bacterial biomass (selective inhibition) and the production of CO2 and N2O by soddy-podzolic soils of postagrogenic biogeocenoses,” Eurasian Soil Sci. 43 (11), 1287–1293 (2010).

    Article  Google Scholar 

  3. N. D. Ananyeva, E. A. Susyan, and E. G. Gavrilenko, “Determination of the soil microbial biomass carbon using the method of substrate-induced respiration,” Eurasian Soil Sci. 44 (11), 1215–1221 (2011).

    Article  Google Scholar 

  4. E. V. Blagodatskaya, M. V. Semenov, and A. V. Yakushev, Activity and Biomass of Soil Microorganisms under Changing Environmental Conditions (Tov. Nauchn. Izd. KMK, Moscow, 2016) [in Russian].

    Google Scholar 

  5. D. G. Zvyagintsev, Methods of Soil Microbiology and Biochemistry (Mosk. Univ., Moscow, 1991) [in Russian].

    Google Scholar 

  6. E. V. Lavrent’eva, A. M. Semenov, V. V. Zelenev, Yu. Chzhun, E. V. Semenova, V. M. Semenov, B. B. Namsaraev, and A. H. C. Van Bruggen, “Daily dynamics of cellulase activity in arable soils depending on management practices,” Eurasian Soil Sci. 42 (8), 885–893 (2009).

    Article  Google Scholar 

  7. S. M. Lukin, “The history of scientific research on soil fertility and the use of fertilizers (to the 105th anniversary of the formation of the Sudogda experimental field of All-Russian Research Institute of Organic Fertilizers and Peat),” Istor. Nauki Tekh., No. 3, 3–17 (2018).

  8. D. A. Nikitin, T. V. Chernov, A. D. Zhelezova, A. K. Tkhakakhova, S. A. Nikitina, M. V. Semenov, N. A. Xenofontova, and O. V. Kutovaya, “Seasonal dynamics of microbial biomass in soddy-podzolic soil,” Eurasian Soil Sci. 52 (11), 1414–1421 (2019). https://doi.org/10.1134/S1064229319110073

    Article  Google Scholar 

  9. D. A. Nikitin, E. A. Ivanova, A. D. Zhelezova, M. V. Semenov, R. G. Gadzhiumarov, A. K. Tkhakakhova, T. I. Chernov, N. A. Ksenofontova, and O. V. Kutovaya, “Assessment of the impact of no-till and conventional tillage technologies on the microbiome of southern agrochernozems,” Eurasian Soil Sci. 53 (12), 1782–1793 (2020). https://doi.org/10.1134/S106422932012008X

    Article  Google Scholar 

  10. D. A. Nikitin, M. V. Semenov, T. I. Chernov, N. A. Ksenofontova, A. D. Zhelezova, E. A. Ivanova, N. B. Khitrov, and A. L. Stepanov, “Microbiological indicators of soil ecological functions: a review,” Eurasian Soil Sci. 55 (2), 221–234 (2022). https://doi.org/10.1134/S1064229322020090

    Article  Google Scholar 

  11. L. M. Polyanskaya and D. G. Zvyagintsev, “The content and composition of microbial biomass as an index of the ecological status of soils,” Eurasian Soil Sci. 38 (6), 625–633 (2005).

    Google Scholar 

  12. L. M. Polyanskaya, N. I. Sukhanova, K. V. Chakmazyan, and D. G. Zvyagintsev, “Changes in the structure of soil microbial biomass under fallow,” Eurasian Soil Sci. 45 (7), 710–716 (2012).

    Article  Google Scholar 

  13. L. M. Polyanskaya, D. D. Yumakov, Z. N. Tyugay, and A. L. Stepanov, “Fungi and bacteria in the dark-humus forest soil,” Eurasian Soil Sci. 53 (9), 1255–1259 (2020). https://doi.org/10.1134/S1064229320090124

    Article  Google Scholar 

  14. I. V. Rusakova, “Influence of straw of cereals and leguminous crops on carbon content, agrochemical properties and nutrient balance in soddy-podzolic soil,” Agrokhim. Vestn., No. 6, 6–10 (2015).

  15. I. V. Rusakova, “Microbiological and ecophysiological parameters of soddy-podzolic soil with long-term use of straw and mineral fertilizers, their relationship with productivity,” S-kh. Biol., No. 55(1), 153–162 (2020). https://doi.org/10.15389/agrobiology.2020.1.153rus

  16. B. M. Semenov and A. K. Khodzhaeva, “Agroecological functions of plant residues in soil,” Agrokhimiya, No. 7, 63–81 (2006).

    Google Scholar 

  17. V. M. Semenov and B. M. Kogut, Soil Organic Matter (GEOS, Moscow, 2015) [in Russian].

    Google Scholar 

  18. V. M. Semenov, N. B. Pautova, T. N. Lebedeva, D. P. Khromychkina, N. A. Semenova, and V. O. Lopes de Gerenyu, “Plant residues decomposition and formation of active organic matter in the soil of the incubation experiments,” Eurasian Soil Sci. 52 (10), 1183–1194 (2019). https://doi.org/10.1134/S1064229319100119

    Article  Google Scholar 

  19. M. V. Semenov, “Metabarcoding and metagenomics in soil ecology research: achievements, challenges, and prospects,” Biol. Bull. Rev. 11 (1), 40–53 (2021). https://doi.org/10.1134/S2079086421010084

    Article  Google Scholar 

  20. M. V. Semenov, D. A. Nikitin, A. L. Stepanov, and V. M. Semenov, “The structure of bacterial and fungal communities in the rhizosphere and root-free loci of gray forest soil,” Eurasian Soil Sci. 52 (3), 319–332 (2019). https://doi.org/10.1134/S1064229319010137

    Article  Google Scholar 

  21. M. V. Semenov, N. A. Manucharova, G. S. Krasnov, D. A. Nikitin, and A. L. Stepanov, “Biomass and taxonomic structure of microbial communities in soils of the right-bank basin of the Oka River,” Eurasian Soil Sci. 52 (8), 971–981 (2019). https://doi.org/10.1134/S106422931908012X

    Article  Google Scholar 

  22. T. I. Chernov and M. V. Semenov, “Management of soil microbial communities: opportunities and prospects (a review),” Eurasian Soil Sci. 54 (12), 1888–1902 (2021).

    Article  Google Scholar 

  23. G. Angst, K. E. Mueller, K. G. Nierop, and M. J. Simpson, “Plant-or microbial-derived? A review on the molecular composition of stabilized soil organic matter,” Soil Biol. Biochem. 156, 108189 (2021). https://doi.org/10.1016/j.soilbio.2021.108189

    Article  Google Scholar 

  24. V. L. Bailey, J. L. Smith, and H. Bolton Jr., “Fungal-to-bacterial ratios in soils investigated for enhanced C sequestration,” Soil Biol. Biochem. 34, 997–1007 (2002). https://doi.org/10.1016/S0038-0717(02)00033-0

    Article  Google Scholar 

  25. M. Berhane, M. Xu, Z. Liang, J. Shi, G. Wei, and X. Tian, “Effects of long-term straw return on soil organic carbon storage and sequestration rate in North China upland crops: a meta-analysis,” Global Change Biol. 26, 2686–2701 (2020). https://doi.org/10.1111/gcb.15018

    Article  Google Scholar 

  26. X. Chen, M. Liu, Y. Kuzyakov, W. Li, J. Liu, C. Jiang, Wu. Meng, and Z. Li, “Incorporation of rice straw carbon into dissolved organic matter and microbial biomass along a 100-year paddy soil chronosequence,” Appl. Soil Ecol. 130, 84–90 (2018). https://doi.org/10.1016/j.apsoil.2018.06.004

    Article  Google Scholar 

  27. X. Chen, Y. Xia, Y. Rui, Z. Ning, Y. Hu, H. Tang, H. He, H. Li, Y. Kuzyakov, T. Ge, J. Wu, and Y. Su, “Microbial carbon use efficiency, biomass turnover, and necromass accumulation in paddy soil depending on fertilization,” Agric., Ecosyst. Environ. 292, 106816 (2020). https://doi.org/10.1016/j.agee.2020.106816

    Article  Google Scholar 

  28. J. Craine, A. J. Elmore, L. Wang, J. Aranibar, M. Bauters, P. Boeckx, et al., “Isotopic evidence for oligotrophication of terrestrial ecosystems,” Nat. Ecol. Evol. 2, 1735–1744 (2018).

    Article  Google Scholar 

  29. F. Fan, B. Yu, B. Wang, T. S. George, H. Yin, D. Xu, D. Li, and A. Song, “Microbial mechanisms of the contrast residue decomposition and priming effect in soils with different organic and chemical fertilization histories,” Soil Biol. Biochem. 135, 213–221 (2019). https://doi.org/10.1016/j.soilbio.2019.05.001

    Article  Google Scholar 

  30. D. Francioli, E. Schulz, G. Lentendu, T. Wubet, F. Buscot, and T. Reitz, “Mineral vs. organic amendments: microbial community structure, activity and abundance of agriculturally relevant microbes are driven by long-term fertilization strategies,” Front. Microbiol. 7, 1446 (2016). https://doi.org/10.3389/fmicb.2016.01446

    Article  Google Scholar 

  31. P. Han, W. Zhang, G. Wang, W. Sun, and Y. Huang, “Changes in soil organic carbon in croplands subjected to fertilizer management: a global meta-analysis,” Sci. Rep. 6 (1), 1–13 (2016). https://doi.org/10.1038/srep27199

    Article  Google Scholar 

  32. J. Z. He, H. W. Hu, and L. M. Zhang, “Current insights into the autotrophic thaumarchaeal ammonia oxidation in acidic soils,” Soil Biol. Biochem. 55, 146–154 (2012). https://doi.org/10.1016/j.soilbio.2012.06.006

    Article  Google Scholar 

  33. M. He, W. Ma, V. V. Zelenev, A. K. Khodzaeva, A. M. Kuznetsov, A. M. Semenov, V. M. Semenov, W. W. Blok, and A. H. C. van Bruggen, “Short-term dynamics of greenhouse gas emissions and cultivable bacterial populations in response to induced and natural disturbances in organically and conventionally managed soils,” Appl. Soil Ecol. 119, 294–306 (2017). https://doi.org/10.1016/j.apsoil.2017.07.011

    Article  Google Scholar 

  34. P. Heděnec, L. O. Nilsson, H. Zheng, P. Gundersen, I. K. Schmidt, J. Rousk, and L. Vesterdal, “Mycorrhizal association of common European tree species shapes biomass and metabolic activity of bacterial and fungal communities in soil,” Soil Biol. Biochem. 149, 107933 (2020). https://doi.org/10.1016/j.soilbio.2020.107933

    Article  Google Scholar 

  35. D. Geisseler and K. M. Scow, “Long-term effects of mineral fertilizers on soil microorganisms—a review,” Soil Biol. Biochem. 75, 54–63 (2014). https://doi.org/10.1016/j.soilbio.2014.03.023

    Article  Google Scholar 

  36. Y. Geng, G. Cao, L. Wang, and S. Wang, “Effects of equal chemical fertilizer substitutions with organic manure on yield, dry matter, and nitrogen uptake of spring maize and soil nitrogen distribution,” PLoS One 14, e0219512 (2019). https://doi.org/10.1371/journal.pone.0219512

    Article  Google Scholar 

  37. Z. Jin, T. Shah, L. Zhang, H. Liu, S. Peng, and L. Nie, “Effect of straw returning on soil organic carbon in rice–wheat rotation system: a review,” Food Energy Secur. 9 (2), e200 (2020). https://doi.org/10.1002/fes3.200

    Article  Google Scholar 

  38. P. Iovieno, L. Morra, A. Leone, L. Pagano, and A. Alfani, “Effect of organic and mineral fertilizers on soil respiration and enzyme activities of two Mediterranean horticultural soils,” Biol. Fertil. Soils 45, 555–561 (2009). https://doi.org/10.1007/s00374-009-0365-z

    Article  Google Scholar 

  39. H. K. Landenmark, D. H. Forgan, and C. S. Cockell, “An estimate of the total DNA in the biosphere,” PLoS Biol. 13, e1002168 (2015). https://doi.org/10.1371/journal.pbio.1002168

    Article  Google Scholar 

  40. Y. Liang, M. Al-Kaisi, J. Yuan, J. Liu, H. Zhang, L. Wang, H. Cai, and J. Ren, “Effect of chemical fertilizer and straw-derived organic amendments on continuous maize yield, soil carbon sequestration and soil quality in a Chinese Mollisol,” Agric., Ecosyst. Environ. 314, 107403 (2021). https://doi.org/10.1016/j.agee.2021.107403

    Article  Google Scholar 

  41. C. Liu, M. Lu, J. Cui, B. Li, and C. Fang, “Effects of straw carbon input on carbon dynamics in agricultural soils: a meta-analysis,” Global Change Biol. 20, 1366–1381 (2014). https://doi.org/10.1111/gcb.12517

    Article  Google Scholar 

  42. F. Lu, “How can straw incorporation management impact on soil carbon storage? A meta-analysis,” Mitigation Adapt. Strategies Global Change 20, 1545–1568 (2015). https://doi.org/10.1007/s11027-014-9564-5

    Article  Google Scholar 

  43. A. A. Malik, S. Chowdhury, V. Schlager, A. Oliver, J. Puissant, P. G. Vazquez, N. Jehmlich, M. Bergen, R. I. Griffiths, and G. Gleixner, “Soil fungal: bacterial ratios are linked to altered carbon cycling,” Front. Microbiol. 7, 1247 (2016). https://doi.org/10.3389/fmicb.2016.01247

    Article  Google Scholar 

  44. M. C. Morais, B. M. Ferrari, C. D. Borges, M. R. Cherubin, S. M. Tsai, C. C. Cerri, C. E. P. Cerri, and B. J. Feigl, “Does sugarcane straw removal change the abundance of soil microbes?,” BioEnergy Res. 12, 901–908 (2019). https://doi.org/10.1007/s12155-019-10018-5

    Article  Google Scholar 

  45. M. Saleem, A. D. Law, M. R. Sahib, Z. H. Pervaiz, and Q. Zhang, “Impact of root system architecture on rhizosphere and root microbiome,” Rhizosphere 6, 47–51 (2018). https://doi.org/10.1016/j.rhisph.2018.02.003

    Article  Google Scholar 

  46. M. V. Semenov, G. S. Krasnov, V. M. Semenov, and A. H. van Bruggen, “Long-term fertilization rather than plant species shapes rhizosphere and bulk soil prokaryotic communities in agroecosystems,” Appl. Soil Ecol. 154, 103641 (2020). https://doi.org/10.1016/j.apsoil.2020.103641

    Article  Google Scholar 

  47. M. V. Semenov, G. S. Krasnov, V. M. Semenov, N. Ksenofontova, N. B. Zinyakova, and A. H. van Bruggen, “Does fresh farmyard manure introduce surviving microbes into soil or activate soil-borne microbiota?,” J. Environ. Manage. 294, 113018 (2021).

    Article  Google Scholar 

  48. M. V. Semenov, G. S. Krasnov, V. M. Semenov, and A. van Bruggen, “Mineral and organic fertilizers distinctly affect fungal communities in the crop rhizosphere,” J. Fungi 8, 251 (2022). https://doi.org/10.3390/jof8030251

    Article  Google Scholar 

  49. J. Six, S. D. Frey, R. K. Thiet, and K. M. Batten, “Bacterial and fungal contributions to carbon sequestration in agroecosystems,” Soil Sci. Soc. Am. J. 70 (2), 555–569 (2006). https://doi.org/10.2136/sssaj2004.0347

    Article  Google Scholar 

  50. M. Soares and J. Rousk, “Microbial growth and carbon use efficiency in soil: Links to fungal-bacterial dominance, SOC-quality and stoichiometry,” Soil Biol. Biochem. 131, 195–205 (2019). https://doi.org/10.1016/j.soilbio.2019.01.010

    Article  Google Scholar 

  51. M. T. Suzuki, L. T. Taylor, and E. F. DeLong, “Quantitative analysis of small-subunit rRNA genes in mixed microbial populations via 5′-nuclease assays,” Appl. Environ. Microbiol. 66 (11), 4605–4614 (2000). https://doi.org/10.1128/AEM.66.11.4605-4614.2000

    Article  Google Scholar 

  52. A. Tiefenbacher, T. Sandén, H.-P. Haslmayr, J. Miloczki, W. Wenzel, and H. Spiegel, “Optimizing carbon sequestration in croplands: a synthesis,” Agronomy 11, 882 (2021). https://doi.org/10.3390/agronomy11050882

    Article  Google Scholar 

  53. A. H. C. van Bruggen, M. He, V. V. Zelenev, V. M. Semenov, A. M. Semenov, E. V. Semenova, T. V. Kuznetsova, A. K. Khodzaeva, A. M. Kuznetsov, and M. V. Semenov, “Relationships between greenhouse gas emissions and cultivable bacterial populations in conventional, organic and long-term grass plots as affected by environmental variables and disturbances,” Soil Biol. Biochem. 114, 145–159 (2017). https://doi.org/10.1016/j.soilbio.2017.07.014

    Article  Google Scholar 

  54. D. Wang, Z. Zhu, M. Shahbaz, L. Chen, S. Liu, K. Inubushi, J. Wu, and T. Ge, “Split N and P addition decreases straw mineralization and the priming effect of a paddy soil: a 100-day incubation experiment,” Biol. Fertil. Soils 55, 701–712 (2019). https://doi.org/10.1007/s00374-019-01383-6

    Article  Google Scholar 

  55. Y. Wang, P. Wu, F. Mei, Y. Ling, Y. Qiao, C. Liu, S. J. Legharic, X. Guan, and T. Wang, “Does continuous straw returning keep China farmland soil organic carbon continued increase? A meta-analysis,” J. Environ. Manage. 288, 112391 (2021). https://doi.org/10.1016/j.jenvman.2021.112391

    Article  Google Scholar 

  56. E. Wessén, K. Nyberg, J. K. Jansson, and S. Hallin, “Responses of bacterial and archaeal ammonia oxidizers to soil organic and fertilizer amendments under long-term management,” Appl. Soil Ecol. 45, 193–200 (2010). https://doi.org/10.1016/j.apsoil.2010.04.003

    Article  Google Scholar 

  57. L. Wu, W. Zhang, W. Wei, Z. He, Y. Kuzyakov, R. Bol, and R. Hu, “Soil organic matter priming and carbon balance after straw addition is regulated by long-term fertilization,” Soil Biol. Biochem. 135, 383–391 (2019). https://doi.org/10.1016/j.soilbio.2019.06.003

    Article  Google Scholar 

  58. D. Yan, X. E. Long, L. Ye, G. Zhang, A. Hu, D. Wang, and S. Ding, “Effects of salinity on microbial utilization of straw carbon and microbial residues retention in newly reclaimed coastal soil,” Eur. J. Soil Biol. 107, 103364 (2021). https://doi.org/10.1016/j.ejsobi.2021.103364

    Article  Google Scholar 

  59. H. Yang, C. Fang, Y. Meng, Y. Dai, and J. Liu, “Long-term ditch-buried straw return increases functionality of soil microbial communities,” Catena 202, 105316 (2021). https://doi.org/10.1016/j.catena.2021.105316

    Article  Google Scholar 

  60. C. Yansheng, Z. Fengliang, Z. Zhongyi, Z. Tongbin, and X. Huayun, “Biotic and abiotic nitrogen immobilization in soil incorporated with crop residue,” Soil Tillage Res. 202, 104664 (2020). https://doi.org/10.1016/j.still.2020.104664

    Article  Google Scholar 

  61. X. M. Zhao, L. He, Z. D. Zhang, H. B. Wang, and L. P. Zhao, “Simulation of accumulation and mineralization (CO2 release) of organic carbon in chernozem under different straw return ways after corn harvesting,” Soil Tillage Res. 156, 148–154 (2016). https://doi.org/10.1016/j.still.2015.11.001

    Article  Google Scholar 

  62. M. Zhao, J. Zhao, J. Yuan, L. Hale, T. Wen, Q. Huang, J. M. Vivanco, J. Zhou, G. A. Kowalchuk, and Q. Shen, “Root exudates drive soil-microbe-nutrient feedbacks in response to plant growth,” Plant, Cell Environ. 44, 613–628 (2021). https://doi.org/10.1111/pce.13928

    Article  Google Scholar 

  63. L. Q. Zhu, J. Li, B. R. Tao, and N. J. Hu, “Effect of different fertilization modes on soil organic carbon sequestration in paddy fields in South China: a meta-analysis,” Ecol. Indic. 53, 144–153 (2015). https://doi.org/10.1016/j.ecolind.2015.01.038

    Article  Google Scholar 

Download references

Funding

The study was supported by the Russian Science Foundation, project no. 21-76-10025.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Nikitin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Klyueva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikitin, D.A., Semenov, M.V., Ksenofontova, N.A. et al. Effect of Fresh Organic Matter of Straw on Microbiological Parameters of Soddy-Podzolic Soil. Eurasian Soil Sc. 56, 651–662 (2023). https://doi.org/10.1134/S1064229322601950

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229322601950

Keywords:

Navigation