Skip to main content
Log in

Soil Microbiome in the Impact Zone of the Pechenganikel Plant Emissions (Murmansk Oblast)

  • SOIL MICROBIOME UNDER THE CONDITIONS OF ANTHROPOGENIC IMPACT
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

The parameters of the microbiome in Albic Podzols are analyzed along the gradient of pollution (3, 16, 30, and 50 km) by Pechenganikel plant emissions (Murmansk oblast, Russia). The amount and structure of the prokaryotic and fungal biomass are assessed by luminescence microscopy; copy number of microbial ribosomal genes is determined by real-time PCR; and taxonomic diversity and abundance of culturable soil micromycetes are estimated. The copy number of the ribosomal genes of bacteria, archaea, and fungi increases close to the source of emissions as compared with remote sites. In all sites, bacteria display the highest copy number of ribosomal genes amounting to (3.21–12) × 1010 gene copies/g soil). As for fungi and archaea, the copy number varies in the range of (0.53–1.59) × 1010 and (0.55–11.41) × 1010 gene copies/g soil, respectively. The minimum copy number for all groups of microorganisms is observed at a distance of 50 km from the Pechenganikel plant and the maximum, in the range of 3–16 km from the source of emission. The abundance of prokaryotes varies in the range of (1.04–8.6) × 108 cells/g soil and their biomass, from 0.2 to 18.3 µg/g soil. The fungal biomass changes from 122 to 572 µg/g soil. A significant decrease in the biomass of all groups of microorganisms is recorded near the plant. The fungal mycelium and spores in all sites are mainly represented by small forms with a diameter of 2–3 µm. The length of the fungal mycelium varies from 51.2 m/g near the plant to 397 m/g at remote sites; however, any regular patterns along the pollution gradient are unobservable. The diversity of culturable soil micromycetes at the level of genera and higher taxa decreases along the pollution gradient of Pechenganikel emissions. The structure of fungal communities changes from a polydominant type (background site) to a monodominant type (near the plant). Penicillium raistrickii is dominant in all sites. The fungi Aureobasidium pullulans and Trichoderma viride are dominant at a distance of 16 km from the pollution source and the dark-colored yeast Torula lucifuga, at a distance of 3 km. As for the background site, representatives of the orders Mucorales and Umbelopsidales are prevalent there.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. E. V. Blagodatskaya, T. V. Pampura, I. N. Bogomolova, G. N. Koptsik, and N. V. Lukina, “Effect of emissions from a Copper-Nickel Smelter on soil microbial communities in forest biogeocenoses of the Kola Peninsula,” Biol. Bull. (Moscow) 35 (2), 202–210 (2008).

    Article  Google Scholar 

  2. M. V. Vecherskii, M. V. Semenov, A. A. Lisenkova, and A. A. Stepankov, “Metagenomics: a new direction in ecology,” Biol. Bull. (Moscow) 48, S107–S117 (2021). https://doi.org/10.1134/S1062359022010150

    Article  Google Scholar 

  3. A. M. Glushakova, A. V. Kachalkin, and I. Yu. Chernov, “Specific features of the dynamics of epiphytic and soil yeast communities in the thickets of Indian balsam on mucky gley soil,” Eurasian Soil Sci. 44 (8), 886–892 (2011).

    Article  Google Scholar 

  4. E. A. Gorbunova and V. A. Terekhova, “Heavy metals as a stress factor for fungi: manifestation of their action at the cellular and organismal levels,” Mikol. Fitopatol. 29 (4), 63–69 (1995).

    Google Scholar 

  5. T. G. Dobrovol’skaya, D. G. Zvyagintsev, I. Yu. Chernov, A. V. Golovchenko, G. M. Zenova, L. V. Lysak, N. A. Manucharova, O. E. Marfenina, L. M. Polyanskaya, A. L. Stepanov, and M. M. Umarov, “The role of microorganisms in the ecological functions of soils,” Eurasian Soil Sci. 48 (9), 959–967 (2015). https://doi.org/10.1134/S1064229315090033

    Article  Google Scholar 

  6. G. A. Evdokimova, M. V. Korneikova, N. P. Mozgova, and V. V. Red’kina, “Microorganisms of the air habitat along the pollution gradient from the Pechenganickel plant to the Pasvik nature reserve,” Vestn. Kol’sk. Nauchn. Tsentra. Ross. Akad. Nauk, No. 3, 22–25 (2012).

    Google Scholar 

  7. G. A. Evdokimova, N. P. Mozgova, and M. V. Korneikova, “The content and toxicity of heavy metals in soils affected by aerial emissions from the Pechenganikel plant,” Eurasian Soil Sci. 47 (5), 504–510 (2014). https://doi.org/10.1134/S1064229314050044

    Article  Google Scholar 

  8. D. G. Zvyagintsev, Methods of Soil Microbiology and Biochemistry (Mosk. Univ., Moscow, 1991) [in Russian].

    Google Scholar 

  9. E. A. Ivanova, E. V. Pershina, D. V. Karpova, A. K. Tkhakakhova, A. D. Zhelezova, O. B. Rogova, M. V. Semenov, A. I. Stifeev, D. A. Nikitin, T. V. Kolganova, and E. E. Andronov, “Prokaryotic communities of soil dumps of the Kursk magnetic anomaly,” Ekol. Genet., No. 18(3), 331–342 (2020). https://doi.org/10.17816/ecogen17901

  10. M. S. Kadulin and G. N. Koptsik, “Emission of CO2 by soils in the impact zone of the Severonikel smelter in the Kola subarctic region,” Eurasian Soil Sci. 46 (11), 1107–1116 (2013). https://doi.org/10.1134/S1064229313110045

    Article  Google Scholar 

  11. G. M. Kashulina, A. N. Kubrak, and N. M. Korobeinikova, “Soil acidity status in the vicinity of the Severonikel copper-nickel industrial complex, Kola Peninsula,” Eurasian Soil Sci. 48 (4), 432–444 (2015). https://doi.org/10.1134/S1064229315040043

    Article  Google Scholar 

  12. V. A. Kovaleva, S. V. Deneva, and A. N. Panyukov, “Microbiological indicators of the soil of solid biogeocenosis in the tundra zone,” Vestn. Inst. Biol. Komi Nauchn. Tsentra Ural. Otd. Ross. Akad. Nauk, No. 4(198), 2–9 (2016). https://doi.org/10.31140/j.vestnikib.2016.4(198).1

    Article  Google Scholar 

  13. G. N. Koptsik, S. V. Koptsik, and I. E. Smirnova, “Alternative technologies for remediation of technogenic barrens in the Kola Subarctic,” Eurasian Soil Sci. 49 (11), 1294–1309 (2016). https://doi.org/10.1134/S1064229316090088

    Article  Google Scholar 

  14. M. V. Korneikova, G. A. Evdokimova, E. V. Lebedeva, and A. A. Chaporgina, “Micromycetes complexes in the air of the anthropogenic-zealous territories of the Kola Peninsula,” Mikol. Fitopatol., No. 49(4), 218–225 (2015).

  15. M. V. Korneikova and E. V. Lebedeva, “Complexes of microscopic fungi in forest ecosystems in the zone of exposure to emissions of copper-nickel enterprises on the Kola Peninsula,” in Problems of Forest Phytopathology and Mycology. Proceedings of 9th International Conference Dedicated to the 90th Anniversary of the Birth of Professor N. I. Fedorov, Minsk, October 19–24, 2015 (Minsk, 2015), pp. 98–101.

  16. M. V. Korneikova, D. A. Nikitin, A. V. Dolgikh, and A. S. Soshina, “Mycobiota of soils of the city of Apatity (Murmansk oblast),” Mikol. Fitopatol., No. 54(4), 264–277 (2020). https://doi.org/10.31857/S0026364820040078

  17. M. V. Korneykova and D. A. Nikitin, “Qualitative and quantitative characteristics of the soil microbiome in the impact zone of the Kandalaksha Aluminum Smelter,” Eurasian Soil Sci. 54 (6), 897–906 (2021). https://doi.org/10.1134/S1064229321060089

    Article  Google Scholar 

  18. N. V. Kuz’menkova, N. E. Kosheleva, and E. E. Asadulin, “Heavy metals in soils and lichens of tundra and forest-tundra zones (Coevro-West of the Kola Peninsula),” Pochvovedenie, No. 2, 244 (2015). https://doi.org/10.7868/S0032180X14100062

  19. M. A. Litvinov, Determinant of Soil Microscopic Fungi (Nauka, Leningrad, 1967) [in Russia].

    Google Scholar 

  20. D. A. Nikitin, “Environmental features of Antarctica mushrooms,” Mikol. Fitopatol., No. 55(2), 79–104 (2021). https://doi.org/10.31857/S0026364821020070

  21. D. A. Nikitin, M. V. Semenov, T. I. Chernov, N. A. Ksenofontova, A. D. Zhelezova, E. A. Ivanova, N. B. Khitrov, and A. L. Stepanov, “Microbiological indicators of soil ecological functions: a review,” Eurasian Soil Sci. 55 (2), 221–234 (2022). https://doi.org/10.1134/S1064229322020090

    Article  Google Scholar 

  22. A. Ya. Obukhov and L. L. Efremova, “Protection and reclamation of soils contaminated with heavy metals,” in Heavy Metals in the Environment and Nature Protection. Proceedings of 2nd All-Union Conference (Moscow, 1988), Part 1, p. 23.

  23. P. E. Odintsov, E. I. Karavanova, and A. A. Stepanov, “Transformation of water-soluble organic substances in litters of podzols in the background and technogenic areas of the Kola Peninsula,” Eurasian Soil Sci. 51 (8), 955–964 (2018). https://doi.org/10.1134/S1064229318080094

    Article  Google Scholar 

  24. I. O. Plekhanova, O. A. Zolotareva, I. D. Tarasenko, and A. S. Yakovlev, “Assessment of ecotoxicity of soils contaminated by heavy metals,” Eurasian Soil Sci. 52 (10), 1274–1288 (2019). https://doi.org/10.1134/S1064229319100089

    Article  Google Scholar 

  25. S. S. Popov, L. F. Popova, A. V. Malkov, A. N. Trofimova, and D. A. Nikitin, “Assessment of the distribution of heavy metals in the soils of the Severny Island (Novaya Zemlya),” Zh. Sib. Fed. Univ., Biol., No. 15(1), 128–141 (2022). https://doi.org/10.17516/1997-1389-0379

  26. M. V. Semenov, “Metabarcoding and metagenomics in soil ecology research: achievements, challenges, and prospects,” Biol. Bull. Rev. 11 (1), 40–53 (2021). https://doi.org/10.1134/S2079086421010084

    Article  Google Scholar 

  27. M. V. Semenov, D. A. Nikitin, A. L. Stepanov, and V. M. Semenov, “The Structure of bacterial and fungal communities in the rhizosphere and root-free loci of gray forest soil,” Eurasian Soil Sci. 52 (3), 319–332 (2019). https://doi.org/10.1134/S1064229319010137

    Article  Google Scholar 

  28. P. N. Tregubova, G. N. Koptsik, A. L. Stepanov, A. A. Stepanov, M. Yu. Korneecheva, and Yu. V. Kupriyanova, “The effect of huminum drugs on the properties of degraded soils of technogenic wastelands,” Byull. Pochv. Inst. im. V. V. Dokuchaeva, No. 97, 129–149 (2019). https://doi.org/10.19047/0136-1694-2019-97-129-149

    Article  Google Scholar 

  29. A. I. Fokina, E. V. Dabakh, L. I. Domracheva, S. G. Skugoreva, E. I. Lyalina, T. Ya. Ashikhmina, Yu. N. Zykova, and K. A. Leonova, “Methodological approaches toward chemico-biological diagnostics of the state of soils in technogenically transformed territories,” Eurasian Soil Sci. 51 (5), 550–560 (2018). https://doi.org/10.1134/S1064229318030031

    Article  Google Scholar 

  30. L. P. Shumilova, N. G. Kuimova, V. A. Terekhova, and A. V. Aleksandrova, “The variety and structure of complexes of microscopic fungi in the soils of the city of Blagoveshchensk,” Mikol. Fitopatol., No. 48(4), 240–247 (2014).

  31. N. Abdu, A. A. Abdullahi, and A. Abdulkadir, “Heavy metals and soil microbes,” Environ. Chem. Lett. 15 (1), 65–84 (2017). https://doi.org/10.1007/s10311-016-0587-x

    Article  Google Scholar 

  32. S. K. Agarwal, Heavy Metal Pollution (A.P.H. Publishing Corporation, New Delhi, 2009).

    Google Scholar 

  33. Heavy Metals in Soils: Trace Metals and Metalloids in Soils and Their Bioavailability, Ed. by B. J. Alloway (Springer Science & Business Media, 2012), Vol. 22, p. 597.

    Google Scholar 

  34. E. E. Andronov, S. N. Petrova, A. G. Pinaev, E. V. Pershina, S. Z. Rakhimgalieva, K. M. Akhmedenov, A. V. Gorobets, and N. K. Sergaliev, “Analysis of the structure of microbial community in soils with different degrees of salinization using T-RFLP and real-time PCR techniques,” Eurasian Soil Sci. 45 (2), 147–156 (2012). https://doi.org/10.1134/S1064229312020044

    Article  Google Scholar 

  35. B. J. Baker, V. De Anda, K. W. Seitz, N. Dombrowski, A. E. Santoro, and K. G. Lloyd, “Diversity, ecology and evolution of Archaea,” Nat. Microbiol. 5, 887–900 (2020). https://doi.org/10.1038/s41564-020-0741-x

    Article  Google Scholar 

  36. K. Bergauer, E. Sintes, J. van Bleijswijk, H. Witte, and G. J. Herndl, “Abundance and distribution of archaeal acetyl-CoA/propionyl-CoA carboxylase genes indicative for putatively chemoautotrophic Archaea in the tropical Atlantic’s interior,” FEMS Microbiol. Ecol. 84 (3), 461–473 (2013). https://doi.org/10.1111/1574-6941.12073

    Article  Google Scholar 

  37. K. J. Boyce and A. Andrianopoulos, “Fungal dimorphism: the switch from hyphae to yeast is a specialized morphogenetic adaptation allowing colonization of a host,” FEMS Microbiol. Rev. 39 (6), 797–811 (2015). https://doi.org/10.1093/femsre/fuv035

    Article  Google Scholar 

  38. K. H. Domsch, W. Gams, and T. H. Anderson, Compendium of Soil Fungi, Ed. by W. Gams (IHW-Verlag, Eching, 2007).

  39. H. Ferris and H. Tuomisto, “Unearthing the role of biological diversity in soil health,” Soil Biol. Biochem. 85, 101–109 (2015). https://doi.org/10.1016/j.soilbio.2015.02.037

    Article  Google Scholar 

  40. N. Fierer, J. A. Jackson, R. Vilgalys, and R. B. Jackson, “Assessment of soil microbial community structure by use of taxon-specific quantitative PCR assays,” Appl. Environ. Microbiol. 71 (7), 4117–4120 (2005). https://doi.org/10.1128/AEM.71.7.4117-4120.2005

    Article  Google Scholar 

  41. N. V. Fokina, M. V. Korneykova, V. V. Redkina, V. A. Myazin, and T. A. Sukhareva, “Biological activity and chemical properties of tundra soils of the Chukotka autonomous okrug in conditions of anthropogenic pollution,” Eurasian Soil Sci. 55, 45–55 (2022). https://doi.org/10.1134/S1064229322010045

    Article  Google Scholar 

  42. M. Frąc, S. E. Hannula, M. Bełka, and M. Jędryczka, “Fungal biodiversity and their role in soil health,” Front. Microbiol. 9, 707 (2018). https://doi.org/10.3389/fmicb.2018.00707

    Article  Google Scholar 

  43. S. D. Garrett, Soil Fungi and Soil Fertility: an Introduction to Soil Mycology (Elsevier, 2016).

    Google Scholar 

  44. F. O. Glöckner, P. Yilmaz, C. Quast, J. Gerken, A. Beccati, A. Ciuprina, G. Brunsa, P. Yarzac, J. Pepliesc, R. Westram, and W. Ludwig, “25 years of serving the community with ribosomal RNA gene reference databases and tools,” J. Biotechnol. 261, 169–176 (2017). https://doi.org/10.1016/j.jbiotec.2017.06.1198

    Article  Google Scholar 

  45. M. Gube, “Fungal molecular response to heavy metal stress,” in Biochemistry and Molecular Biology (Springer, 2016), pp. 47–68. https://doi.org/10.1007/978-3-319-27790-5_4

  46. X. Ji, E. Abakumov, and V. Polyakov, “Assessments of pollution status and human health risk of heavy metals in permafrost-affected soils and lichens: a case-study in Yamal Peninsula, Russia Arctic,” Hum. Ecol. Risk Assess. 25 (8), 2142–2159 (2019). https://doi.org/10.1080/10807039.2018.1490887

    Article  Google Scholar 

  47. M. Korneykova, D. A. Nikitin, and V. Myazin, “Qualitative and quantitative characteristics of soil microbiome of Barents Sea coast, Kola Peninsula,” Microorganisms 9 (10), 2126 (2021). https://doi.org/10.3390/microorganisms9102126

    Article  Google Scholar 

  48. M. V. Korneykova, V. I. Vasenev, D. A. Nikitin, A. V. Dolgikh, A. S. Soshina, V. A. Myazin, and M. R. Nakhaev, “Soil microbial community of urban green infrastructures in a polar city,” Urban Ecosyst., 1–17 (2022). https://doi.org/10.1007/s11252-022-01233-8

  49. V. Masindi and K. L. Muedi, “Environmental contamination by heavy metals,” Heavy Met., 115–132 (2018).

  50. R. A. Olsen and J. Hovland, Fungal Flora and Activity in Norway Spruce Needle Litter: Report (Agricultural Univ. of Norway, Ås, 1985).

  51. A. Pal, S. Bhattacharjee, J. Saha, M. Sarkar, and P. Mandal, “Bacterial survival strategies and responses under heavy metal stress: a comprehensive overview,” Crit. Rev. Microbiol. 48 (3), 327–355 (2022). https://doi.org/10.1080/1040841X.2021.1970512

    Article  Google Scholar 

  52. M. Riaz, M. Kamran, Y. Fang, Q. Wang, H. Cao, G. Yang, L. Deng, Y. Wang, Y. Zhou, I. Anastopoulos, and X. Wang, “Arbuscular mycorrhizal fungi-induced mitigation of heavy metal phytotoxicity in metal contaminated soils: a critical review,” J. Hazard. Mater. 402, 123919 (2021). https://doi.org/10.1016/j.jhazmat.2020.123919

    Article  Google Scholar 

  53. N. M. Schmidt, B. Hardwick, O. Gilg, T. T. Høye, P. H. Krogh, H. Meltofte, A. Michelsen, J. B. Mosbacher, K. Raundrup, J. Reneerkens, L. Stewart, H. Wirta, and T. Roslin, “Interaction webs in arctic ecosystems: determinants of arctic change?,” Ambio 46, 12–25 (2017). https://doi.org/10.1007/s13280-016-0862-x

    Article  Google Scholar 

  54. C. S. Seelmann, M. Willistein, J. Heider, and M. Boll, “Tungstoenzymes: occurrence, catalytic diversity and cofactor synthesis,” Inorganics 8 (8), 44 (2020). https://doi.org/10.3390/inorganics8080044

    Article  Google Scholar 

  55. K. A. Seifert and W. Gams, “The genera of Hyphomycetes—2011 update,” in Persoonia: Molecular Phylogeny and Evolution of Fungi (2011), Vol. 27, p. 119. https://doi.org/10.3767/003158511X617435

  56. S. Singh, S. Pandey, and H. S. Chaudhary, “Actinomycetes: tolerance against heavy metals and antibiotics,” Int. J. Bioassays 3, 3376–3383 (2014).

    Google Scholar 

  57. W. Sun, K. Cheng, K. Y. Sun, and X. Ma, “Microbially mediated remediation of contaminated sediments by heavy metals: a critical review,” Curr. Pollut. Rep. 7 (2), 201–212 (2021). https://doi.org/10.1007/s40726-021-00175-7

    Article  Google Scholar 

  58. J. D. van Elsas, A. Hartmann, M. Schloter, J. T. Trevors, and J. K. Jansson, “The bacteria and archaea in soil,” in Modern Soil Microbiology (CRC Press, 2019), pp. 49–64.

    Book  Google Scholar 

  59. Y. Yu, C. Lee, and S. Hwang, “Analysis of community structures in anaerobic processes using a quantitative real-time PCR method,” Water Sci. Technol. 52, 85–91 (2005). https://doi.org/10.2166/wst.2005.0502

    Article  Google Scholar 

Download references

Funding

Field work and soil sampling were supported by the state budget (state project no. 122022400109-7); molecular genetic research, by the Russian Science Foundation (project no. 19-77-300-12); and assessment of the microbial biomass, by the RUDN University Scientific Projects Grant System (project no. 202185-2-000).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Korneykova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by G. Chirikova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korneykova, M.V., Nikitin, D.A. Soil Microbiome in the Impact Zone of the Pechenganikel Plant Emissions (Murmansk Oblast). Eurasian Soil Sc. 56, 682–693 (2023). https://doi.org/10.1134/S1064229322601299

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229322601299

Keywords:

Navigation