Skip to main content
Log in

Prediction of Soil Organic Carbon Contents in Tibet Using a Visible Near-Infrared Spectral Library

  • SOIL CHEMISTRY
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

Accurate soil organic carbon (SOC) data are very important for management of agricultural production and climate change mitigation. Visible near-infrared diffuse reflectance spectroscopy is an inexpensive, non-destructive, efficient, and reliable technique for monitoring soil properties. Soil spectral libraries can contain large sets of diverse soil data for empirical calibration. In this study, we focused on improving the prediction accuracy of the SOC content at the local field scale in Tibet using field-wet, intact spectra and different spectral libraries. The direct standardization algorithm and piecewise direct standardization algorithm were used to remove the influence of environmental factors from the in situ vis-NIR spectra. These algorithms effectively removed the influence of environment factors from the field-wet, intact spectra. The ratio of performance to deviation values for prediction of the SOC content using the field and laboratory spectra with the local spectral library were 1.57 and 1.98, respectively. The local spectral library models outperformed spiked national spectral library models and had higher ratio of performance to deviation values for shrub meadows, forests, and the total dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. A. Herrero and M. C. Ortiz, “Multivariate calibration transfer applied to the routine polarographic determination of copper, lead cadmium and zinc,” Anal. Chim. Acta 348, 51–59 (1997).

    Article  Google Scholar 

  2. A. Morellos, X. E. Pantazi, D. Moshou, T. Alexandridis, R. Whetton, G. Tziotzios, J. Wiebensohn, R. Bill, and A. M. Mouazen, “Machine learning based prediction of soil total nitrogen, organic carbon and moisture content by using vis-NIR spectroscopy,” Biosyst. Eng. 152, 104–116 (2016).

    Article  Google Scholar 

  3. A. Rinnan, F. V. Berg, and S. B. Engelsen, “Review of the most common pre-processing techniques for near-infrared spectra,” TrAC, Trends Anal. Chem. 28, 1201–1222 (2009).

    Article  Google Scholar 

  4. B. Hu, S. C. Chen, J. Hu, F. Xia, Y. Li, and Z. Shi, “Application of portable XRF and VNIR sensors for rapid assessment of soil heavy metal pollution,” PLoS One 12 (2), e0172438 (2017).

    Article  Google Scholar 

  5. B. Kuang and A. M. Mouazen, “Calibration of visible and near infrared spectroscopy for soil analysis at the field scale on three European farms,” Eur. J. Soil Sci. 62, 629–636 (2011).

    Article  Google Scholar 

  6. B. Minasny, A. B. McBratney, V. Bellon-Maurel, J. M. Roger, A. Gobrecht, L. Ferrand, and S. Joalland, “Removing the effect of soil moisture from NIR diffuse reflectance spectra for the prediction of soil organic carbon,” Geoderma 167–168, 118–124 (2011).

    Article  Google Scholar 

  7. C. Guerrero, J. Wetterlind, S. Wetterlind, A. M. Mouazen, and R. A. Viscarra Rossel, “Do we really need large spectral libraries for local scale SOC assessment with NIR spectroscopy?,” Soil Tillage Res. 155, 501–509 (2016).

    Article  Google Scholar 

  8. C. Zhou, D. Ren, H. Ma, and Q. Guo, “Analysis of the active organic carbon components and soil respiration characteristics from two typical natural forests in Sygara mountains, Tibet, China,” Acta Sci. Circumstantiae 35 (2), 557–563 (2015).

    Google Scholar 

  9. E. Y. Liang, X. M. Shao, and Y. Xu, “Tree-ring evidence of recent abnormal warming on the southeast Tibetan Plateau,” Theor. Appl. Climatol. 98, 9–18 (2009).

    Article  Google Scholar 

  10. E. Y. Liang, Y. F. Wang, Y. Xu, B. M. Liu, and X. Shao, “Growth variation in Abies georgei var. smithii along altitudinal gradients in the Sygera Mountains, southeastern Tibetan Plateau,” Trees (Heidelberg, Ger.) 24, 363–373 (2021).

  11. J. Peng, W. J. Ji, Z. Q. Ma, S. Li, S. C. Chen, L. Q. Zhou, and Z. Shi, “Predicting total dissolved salts and soluble ion concentrations in agricultural soils using portable visible near-infrared and mid-infrared spectrometers,” Biosyst. Eng. 152, 94–103 (2016).

    Article  Google Scholar 

  12. J. Wetterlind and B. Stenberg, “Near-infrared spectroscopy for within-field soil characterization: small local calibrations compared with national libraries spiked with local samples,” Eur. J. Soil Sci. 61, 823–843 (2010).

    Article  Google Scholar 

  13. M. A. Munnaf, S. Nawar, and A. M. Mouazen, “Estimation of secondary soil properties by fusion of laboratory and on-line measured vis-NIR spectra,” Remote Sens. 23, (2019).

  14. N. K. Wijewardane, Y. Ge, and C. L. S. Morgan, “Prediction of soil organic and inorganic carbon at different moisture contents with dry ground VNIR: a comparative study of different approaches,” Eur. J. Soil Sci. 67 (5), 605–615 (2016).

    Article  Google Scholar 

  15. Q. H. Jiang, Y. Y. Chen, L. Guo, T. Fei, and K. Qi, “Estimating soil organic carbon of cropland soil at different levels of soil moisture using vis-NIR spectroscopy,” Remote Sens. 8 (9), 755 (2016).

    Article  Google Scholar 

  16. R. A. Viscarra Rossel and T. Behrens, “Using data mining to model and interpret soil diffuse reflectance spectra,” Geoderma 158 (1), 46–54 (2010).

    Article  Google Scholar 

  17. R. N. Feudale, N. A. Woody, H. Tan, and A. J. Myles, “Transfer of multivariate calibration models: a review,” Chemom. Intell. Lab. Syst. 64 (2), 181–192 (2002).

    Article  Google Scholar 

  18. R. Zeng, Y. G. Zhao, D. C. Li, D. W. Wu, C. L. Wei, and G. L. Zhang, “Selection of ‘local’ models for prediction of soil organic matter using a regional soil vis-NIR spectral library,” Soil Sci. 181 (1), 13–19 (2016).

    Article  Google Scholar 

  19. S. C. Chen, D. Y. Xu, S. Li, W. J. Ji, M. H. Yang, Y. Zhou, B. F. Hu, H. Y. Xu, and Z. Shi, “Monitoring soil organic carbon in alpine soils using in situ vis-NIR spectroscopy and a multilayer perceptron,” Land Degrad. Dev. 31, (2020).

  20. S. C. Chen, L. S. Feng, S. Li, W. J. Ji, and Z. Shi, “Vis-NIR spectral inversion for prediction of soil total nitrogen content in laboratory based on locally weighted regression,” Acta Pedol. Sin. 52 (2), 312–320 (2015).

    Google Scholar 

  21. S. H. Javadi, M. A. Munnaf, and A. M. Mouazen, “Fusion of Vis-NIR and XRF spectra for estimation of key soil attributes,” Geoderma 385, 114851 (2021).

    Article  Google Scholar 

  22. S. Li, Z. Shi, S. C. Chen, W. J. Ji, L. Q. Zhou, W. Yu, and R. A. Viscarra Rossel, “In situ measurements of organic carbon in soil profiles using vis-NIR spectroscopy on the Qinghai-Tibet Plateau,” Environ. Sci. Technol. 49 (8), 4980–4987 (2015).

    Article  Google Scholar 

  23. S. Shu, A. K. Jain, C. D. Koven, and K. Mishra, “Estimation of permafrost SOC stock and turnover time using a land surface model with vertical heterogeneity of permafrost soils,” Global Biogeochem. Cycles 34 (11), e2020CB006585 (2020).

  24. T. M. Alam, M. Alam, S. K. Mcintyre, D. E. Volk, M. Neerathilingam, and B. A. Luxon, “Investigation of chemometric instrumental transfer methods for high-resolution NMR,” Anal. Chem. 81, 4433–4443 (2009).

    Article  Google Scholar 

  25. V. Bellon, E. Fernandez, B. Palagos, J. M. Roger, and A. McBratney, “Critical review of chemometric indicators commonly used for assessing the quality of the prediction of soil attributes by NIR spectroscopy,” TrAC, Trends Anal. Chem. 29, 1073–1081 (2010).

    Article  Google Scholar 

  26. W. J. Ji, R. A. Viscarra Rossel, and Z. Shi, “Accounting for the effects of water and the environment on proximally sensed vis-NIR soil spectra and their calibrations,” Eur. J. Soil Sci. 66 (3), 555–565 (2015).

    Article  Google Scholar 

  27. W. J. Ji, R. A. Viscarra Rossel, and Z. Shi, “Improved estimates of organic carbon using proximally sensed vis-NIR spectra corrected by piecewise direct standardization,” Eur. J. Soil Sci. 66 (4), 670–678 (2015).

    Article  Google Scholar 

  28. W. J. Ji, S. Li, S. C. Chen, Z. Shi, R. A. Viscarra Rossel, and A. Mouazen, “Prediction of soil attributes using the Chinese soil spectral library and standardized spectra recorded at field conditions,” Soil Tillage Res. 155, 492–500 (2015).

    Article  Google Scholar 

  29. X. L. Jia, S. C. Chen, Y. Y. Yang, L. Q. Zhou, and Z. Shi, “Organic carbon prediction in soil cores using VNIR and MIR techniques in an alpine landscape,” Sci. Rep. 7, (2017).

  30. Y. Gao, L. J. Cui, B. Lei, Y. F. Zhai, T. Z. Shi, J. J. Wang, Y. Y. Chen, H. He, and G. F. Wu, “Estimating soil organic carbon content with visible-near-infrared (vis-NIR) spectroscopy,” Appl. Spectrosc. 68 (7), 712 (2014).

    Article  Google Scholar 

  31. Y. Peng, M. Knadel, R. Gislum, F. Deng, T. Norgaard, and W. D. J. Lis, “Predicting soil organic carbon at field scale using a national soil spectral library,” J. Near Infrared Spectrosc. 21 (3), 213–222 (2013).

    Article  Google Scholar 

  32. Z. Shi, Q. L. Wang, J. Peng, W. J. Ji, H. J. Liu, X. Li, and R. A. Viscarra Rossel, “Development of national VNIR soil-spectral library for soil classification and the predictions of organic matter,” Sci. China: Earth Sci. 44 (1), 1–11 (2014).

    Google Scholar 

  33. Z. Shi, W. J. Ji, R. A. Viscarra Rossel, S. C. Chen, and Y. Zhou, “Prediction of soil organic matter using a spatially constrained local partial least squares regression and the Chinese vis-NIR spectral library,” Eur. J. Soil Sci. 66, 679–687 (2015).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Zhou Shi, Xiaolin Jia and Bifeng Hu. The first draft of the manuscript was written by Xiaolin Jia and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript. We thank Gabrielle David, PhD, from Liwen Bianji (Edanz) (www.liwenbianji.cn/) for editing the English text of a draft of this manuscript.

Funding

This research was supported by grants from the Social Science Foundation of Jiangxi Province (Grant no. 21YJ43D), the Project of Department of Education Science and Technology of Jiangxi Province (Grant no. GJJ210541), the National Science Foundation of China (Grant nos. 42201073, 42071068), the Open Foundation of the Key Laboratory of Agricultural Remote Sensing and Information System, Zhejiang Province (Grant no. ZJRS-2022001) and the Key Laboratory of Environment Remediation and Ecological Health (Zhejiang University), Ministry of Education (Grant no. EREH202206).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bifeng Hu.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, X., Xie, M., Hu, B. et al. Prediction of Soil Organic Carbon Contents in Tibet Using a Visible Near-Infrared Spectral Library. Eurasian Soil Sc. 56, 727–737 (2023). https://doi.org/10.1134/S1064229322601214

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229322601214

Keywords:

Navigation