Skip to main content
Log in

Field Verification of Erosion Models Based on the Studies of a Small Catchment in the Vorobzha River Basin (Kursk oblast, Russia)

  • DEGRADATION, REHABILITATION, AND CONSERVATION OF SOILS
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

Verification of soil erosion models (WATEM/SEDEM for rainfall and tillage soil erosion and regional model of the State Hydrological Institute for snowmelt soil erosion) was carried out on the basis of estimates of soil erosion and deposition rates in an arable catchment of dry valley in the Vorobzha River basin located in the central part of the Srednerusskaya Upland in the forest-steppe zone. The rates of soil loss/gain for the entire period of agricultural use were obtained using the soil truncation method. The rate of sediment deposition in the dry valley bottom for the period after the 1986 was determined based on interpretation the Chernobyl-derived 137Cs depth distribution in the sediments. Comparison of the model calculations with field-based method estimates was generally in good agreement. Also, the erosion model calculation satisfactorily reflected the pattern of zones with different intensity of soil erosion. WATEM/SEDEM made it possible to take into account the movement of soil matter by tillage erosion. Some discrepancies between the modeling results and field data were mainly due to the insufficiently detailed input parameters, e.g., the data on crop rotations or local microrelief specifics. WATEM/SEDEM did not accurately estimate the rate and volume of sediment accumulation, especially for areas beyond cropland.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. V. V. Antonov, “The use of hydraulic structures in anti-erosion forest reclamation,” Lesn. Khoz., No. 9, 31–33 (1991).

  2. A. T. Barabanov, S. V. Dolgov, N. I. Koronkevich, V. I. Panov, and A. I. Petel’ko, “Surface runoff and snowmelt infiltration into the soil on plowlands in the forest-steppe and steppe zones of the East European plain,” Eurasian Soil Sci. 51 (1), 66–72 (2018). https://doi.org/10.1134/S1064229318010039

    Article  Google Scholar 

  3. D. A. Bezukhov, V. N. Golosov, and A. V. Panin, “Estimation of the coefficient of sediment delivery from small watersheds in the forest-steppe and steppe regions of the East European Plain,” Izv. Ross. Akad. Nauk, Ser. Geogr., No. 4, 73–84 (2019). https://doi.org/10.31857/S2587-55662019473-84

  4. V. N. Golosov, Erosion-Accumulation Processes in the River Basins of Developed Plains (GEOS, Moscow, 2006) [in Russian].

    Google Scholar 

  5. A. P. Zhidkin, V. N. Golosov, and A. S. Dobryanskii, “Evaluation of the applicability of digital elevation models for modeling soil erosion (on the example of a small catchment area in the Kursk region),” Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa 18 (5), 133–144 (2021). https://doi.org/10.21046/2070-7401-2021-18-5-133-144

    Article  Google Scholar 

  6. D. N. Kozlov, A. P. Zhidkin, and N. I. Lozbenev, “Digital mapping of erosive soil cover structures based on a simulation model of washout (northern forest-steppe of the Central Russian Upland),” Byull. Pochv. Inst. im. V. V. Dokuchaeva, No. 100, 5–29 (2019). https://doi.org/10.19047/0136-1694-2019-100-5-35

    Article  Google Scholar 

  7. M. V. Kumani, Abstract of Doctoral Dissertation in Agriculture (Kursk, 2003).

  8. G. A. Larionov, Erosion and Deflation of Soils: Main Regularities and Quantitative Estimates (Mosk. Univ., Moscow, 1993) [in Russian].

    Google Scholar 

  9. G. A. Larionov, S. F. Krasnov, L. F. Litvin, N. G. Dobrovol’skaya, and Z. P. Kiryukhina, “Empirical (statistical) model of soil erosion,” in Erosion-Channel Systems (Moscow, 2017), pp. 154–173 [in Russian].

  10. F. N. Liseatskii, A. A. Svetlichnyi, and S. G. Chernyi, Modern Problems of Erosion Studies (Konstanta, Belgorod, 2012) [in Russian].

    Google Scholar 

  11. L. F. Litvin, Geography of Soil Erosion of Agricultural Lands in Russia (IKTs Akademkniga, Moscow, 2002) [in Russian].

  12. L. F. Litvin, Z. P. Kiryukhina, S. F. Krasnov, and N. G. Dobrovol’skaya, “Dynamics of agricultural soil erosion in European Russia,” Eurasian Soil Sci. 50 (11), 1344–1353 (2017). https://doi.org/10.1134/S1064229317110084

    Article  Google Scholar 

  13. L. F. Litvin, Z. P. Kiryukhina, S. F. Krasnov, N. G. Dobrovol’skaya, and A. V. Gorobets, “Dynamics of agricultural soil erosion in Siberia and Far East,” Eurasian Soil Sci. 54 (1), 150–160 (2021). https://doi.org/10.1134/S1064229321010075

    Article  Google Scholar 

  14. K. A. Maltsev and O. P. Yermolaev, “Potential soil loss from erosion on arable lands in the European part of Russia,” Eurasian Soil Sci. 52 (12), 1588–1597 (2019). https://doi.org/10.1134/S106422931912010X

    Article  Google Scholar 

  15. Guidelines for Compiling Large-Scale Maps of Erosion-Hazardous Lands to Justify Soil Protection Measures in On-Farm Land Management (Mosk. Univ., Moscow, 1996) [in Russian].

  16. All-Union Instruction on Soil Surveys and Compilation of Large-Scale Soil Maps of Land Use (Kolos, Moscow, 1973) [in Russian].

  17. Z. V. Patsukevich, A. N. Gennadiev, and M. I. Gerasimova, “Permissible washout and self-healing of soils,” Pochvovedenie, No. 5, 634–641 (1997).

    Google Scholar 

  18. Weather in Artel’noe, Belgorod oblast. https://rp5.ru/. Cited November 1, 2021.

  19. G. P. Surmach, Relief Formation, Formation of the Forest-Steppe, Modern Erosion and Anti-Erosion Measures (Volgograd, 1992) [in Russian].

    Google Scholar 

  20. Erosion-Channel Systems (INFRA-M, Moscow, 2017) [in Russian].

  21. L. C. Alatorre, S. Beguería, and J. M. García-Ruiza, “Regional scale modeling of hillslope sediment delivery: a case study in the Barasona Reservoir watershed (Spain) using WATEM/SEDEM,” J. Hydrol. 391, 109–123 (2010). https://doi.org/10.1016/j.jhydrol.2010.07.010

    Article  Google Scholar 

  22. C. Alewell, P. Borrelli, K. Meusburger, and P. Panagos, “Using the USLE: chances, challenges and limitations of soil erosion modelling,” Int. Soil Water Conserv. Res. 7, 203–225 (2019). https://doi.org/10.1016/j.iswcr.2019.05.004

    Article  Google Scholar 

  23. P. V. G. Batista, J. Davies, M. L. N. Silva, and J. N. Quinton, “On the evaluation of soil erosion models: Are we doing enough?” Earth-Sci. Rev. 197, (2019). https://doi.org/10.1016/j.earscirev.2019.102898

  24. V. R. Belyaev, V. N. Golosov, A. Yu. Sidorchuk, P. J. Wallbrink, and A. S. A. Murray, “A comparison of methods for evaluating soil redistribution in the severely eroded Stavropol region, southern European Russia,” Geomorphology 65 (3–4), 173–193 (2005). https://doi.org/10.1016/j.geomorph.2004.09.001

    Article  Google Scholar 

  25. D. A. Borrelli, L. R. Robinson, E. Fleischer, C. Lugato, C. Ballabio, K. Alewell, S. Meusburger, et al., “An assessment of the global impact of 21st century land use change on soil erosion,” Nat. Commun. 8 (1) art. 2013 (2017). https://doi.org/10.1038/s41467-017-02142-7

    Article  Google Scholar 

  26. J. de Vente, J. Poesen, G. Verstraeten, G. Govers, M. Vanmaercke, A. Van Rompaey, M. Arabkhedri, and C. Boix-Fayos, “Predicting soil erosion and sediment yield at regional scales: where do we stand?” Earth Sci. Rev. 127, 16–29 (2013). https://doi.org/10.1016/j.earscirev.2014.03.002

    Article  Google Scholar 

  27. V. N. Golosov, A. L. Collins, N. G. Dobrovolskaya, O. I. Bazhenova, Yu. V. Ryzhov, and A. Yu. Sidorchuk, “Soil loss on the arable lands of the forest-steppe and steppe zones of European Russia and Siberia during the period of intensive,” Geoderma 381, (2021). https://doi.org/10.1016/j.geoderma.2020.114678

  28. V. N. Golosov, N. N. Ivanova, A. V. Gusarov, and A. G. Sharifullin, “Assessment of the trend of degradation of arable soils on the basis of data on the rate of stratozem development obtained with the use of 137Cs as a Chronomarker,” Eurasian Soil Sci. 50 (10), 1195–1208 (2017). https://doi.org/10.1134/S1064229317100039

    Article  Google Scholar 

  29. V. Golosov, A. Koiter, M. Ivanov, K. Maltsev, A. Gusarov, A. Sharifullin, and I. Radchenko, “Assessment of soil erosion rate trends in two agricultural regions of European Russia for the last 60 years,” J. Soils Sediments 18 (12), 3388–3403 (2018c). https://doi.org/10.1007/s11368-018-2032-1

    Article  Google Scholar 

  30. V. N. Golosov, D. E. Walling, A. V. Konoplev, M. M. Ivanov, and A. G. Sharifullin, “Application of bomb- and Chernobyl-derived radiocaesium for reconstructing changes in erosion rates and sediment fluxes from croplands in areas of European Russia with different levels of Chernobyl fallout,” J. Environ. Radioact. 186, 78–89 (2018b). https://doi.org/10.1016/j.jenvrad.2017.06.022

    Article  Google Scholar 

  31. V. Golosov, O. Yermolaev, L. Litvin, N. Chizhikova, Z. Kiryukhina, and G. Safina, “Influence of climate and land use changes on recent trends of soil erosion rates within the Russian Plain,” Land Degrad. Dev. 29 (8), 2658–2667 (2018). https://doi.org/10.1002/ldr.3061

    Article  Google Scholar 

  32. N. Haregeweyn, J. Poesen, G. Verstraeten, G. Govers, J. de Vente, J. Nyssen, J. Deckers, and J. Moeyersons, “Assessing the performance of a spatially distributed soil erosion and sediment delivery model (WATEM/SEDEM) in Northern Ethiopia,” Land Degrad. Dev. 24, 188–204 (2013). https://doi.org/10.1002/ldr.1121

    Article  Google Scholar 

  33. C. G. Karydas, P. Panagos, and I. Z. Gitas, “A classification of water erosion models according to their geospatial characteristics,” Int. J. Digital Earth. 7 (3), 229–250 (2012). https://doi.org/10.1080/17538947.2012.671380

    Article  Google Scholar 

  34. N. Khitrov, M. Smirnova, N. Lozbenev, E. Levchenko, V. Gribov, D. Kozlov, D. Rukhovich, N. Kalinina, and P. Koroleva, “Soil cover patterns in the forest-steppe and steppe zones of the east-european plain,” Soil Sci. Annu. 70 (3), 198–210 (2019). https://doi.org/10.2478/ssa-2019-0018

    Article  Google Scholar 

  35. J. Krasa, T. Dostál, K. Vrana, and J. Plocek, “Predicting spatial patterns of sediment delivery and impacts of land-use scenarios on sediment transport in Czech catchments,” Land Degrad. Dev. 2, 367–375 (2010). https://doi.org/10.1002/ldr.959

    Article  Google Scholar 

  36. R. Lal, “Soil erosion by wind and water: problems and prospects,” in Soil Erosion Research Methods. Soil and Water Conservation Society, Ed. by R. Lal (St. Lucie Press, America, 1994), pp. 1–9. https://doi.org/10.1201/9780203739358-1

  37. J. Lieskovský and P. Kenderessy, “Modelling the effect of vegetation cover and different tillage practices on soil erosion in vineyards: a case study in vráble (Slovakia) using WATEM/SEDEM,” Land Degrad. Dev. 25 (3), 288–296 (2014). https://doi.org/10.1002/ldr.2162

    Article  Google Scholar 

  38. D. A. Lobb, R. G. Kachanoski, and M. H. Miller, “Tillage translocation and tillage erosion on shoulder slope landscape positions measured using 137Cs as a tracer,” Can. J. Soil Sci. 75, 211–218 (1995). https://doi.org/10.4141/cjss95-029

    Article  Google Scholar 

  39. N. Lozbenev, A. Yurova, M. Smirnova, and D. Kozlov, “Incorporating process-based modeling into digital soil mapping: a case study in the virgin steppe of the Central Russian upland,” Geoderma 383, (2021). https://doi.org/10.1016/j.geoderma.2020.114733

  40. P. Panagos, P. Borrelli, K. Meusburger, et al., “Global rainfall erosivity assessment based on high-temporal resolution rainfall records,” Sci. Rep. 7 (1), art. 4175 (2017). https://doi.org/10.1038/s41598-017-04282-8

    Article  Google Scholar 

  41. A. Pandey, S. K. Himanshu, S. K. Mishra, and V. P. Singh, “Physically based soil erosion and sediment yield models revisited,” Catena 147, 595–620 (2016). https://doi.org/10.1016/J.CATENA.2016.08.002

    Article  Google Scholar 

  42. A. V. Panin, D. E. Walling, and V. N. Golosov, “The role of soil erosion and fluvial processes in the post-fallout redistribution of chernobyl-derived caesium-137: a case study of the Lipki catchment, Central Russia,” Geomorphology 40 (3–4), 185–204 (2001). https://doi.org/10.1016/S0169-555X(01)00043-5

    Article  Google Scholar 

  43. J. Pietroń, S. R. Chalov, A. S. Chalova, A. V. Alekseenko, and J. Jarsjö, “Extreme spatial variability in riverine sediment load inputs due to soil loss in surface mining areas of the Lake Baikal basin,” Catena 152, 82–93 (2017). https://doi.org/10.1016/j.catena.2017.01.008

    Article  Google Scholar 

  44. F. F. Pruski and M. A. Nearing, “Climate-induced changes in erosion during the 21st century for eight U.S. locations,” Water Resour. Res. 38 (12), 34-1–34-11 (2002). https://doi.org/10.1029/2001WR000493

  45. Sediment Transport Using WaTEM/SEDEM. https:// esdac.jrc.ec.europa.eu/themes/sediment-transport-using-watemsedem. Cited November 10, 2021.

  46. P. Tsymbarovich, G. Kust, M. Kumani, V. Golosov, and O. Andreeva, “Soil erosion: an important indicator for the assessment of land degradation neutrality in Russia,” Int. Soil Water Conserv. Res. 8 (4), 418–429 (2020). https://doi.org/10.1016/j.iswcr.2020.06.002

    Article  Google Scholar 

  47. M. Van Loo, B. Dusara, G. Verstraetena, H. Renssen, B. Notebaert, K. D’Haen, and J. Bakker, “Human induced soil erosion and the implications on crop yield in a small mountainous Mediterranean catchment (SW-Turkey),” Catena 149, 491–504 (2017). https://doi.org/10.1016/j.catena.2016.08.023

    Article  Google Scholar 

  48. K. Van Oost, O. Cerdan, and T. A. Quine, “Accelerated fluxes by water and tillage erosion on European agricultural land,” Earth Surf. Processes Landforms. 34, 1625–1634 (2009). https://doi.org/10.1002/esp.1852

    Article  Google Scholar 

  49. K. Van Oost, G. Govers, and P. Desmet, “Evaluating the effects of changes in landscape structure on soil erosion by water and tillage,” Landscape Ecol. 15, 577–589 (2000). https://doi.org/10.1023/A:1008198215674

    Article  Google Scholar 

  50. A. Van Rompay, G. Verstraeten, K. Van Oost, G. Govers, and J. Poesen, “Modelling mean annual sediment yield using a distributed approach,” Earth Surf. Processes Landforms 26 (11), 1221–1236 (2001). https://doi.org/10.1002/esp.275

    Article  Google Scholar 

  51. G. Verstraeten, I. P. Prosser, and P. Fogarty, “Predicting the spatial patterns of hillslope sediment delivery to river channels in the Murrumbidgee catchment, Australia,” J. Hydrol. 334, 440–454 (2007).https://doi.org/10.1016/j.jhydrol.2006.10.025

  52. A. Zhidkin, D. Fomicheva, N. Ivanova, T. Dostál, A. Yurova, M. Komissarov, and J. Krása, “A detailed reconstruction of changes in the factors and parameters of soil erosion over the past 250 years in the forest zone of European Russia (Moscow region),” Int. Soil Water Conserv. Res. 10, 149–160 (2022). https://doi.org/10.1016/j.iswcr.2021.06.003

    Article  Google Scholar 

Download references

Funding

This study was supported financially by the Russian Foundation for Basic Research, project no. 19-29-05025mk (field research: assessment of the sedimentation rate in the dry valley bottom with radiocesium method and the use of the soil profile truncation method); as well as by the Russian Science Foundation, project no. 22-17-00071 (digital modeling of erosion-accumulation processes and verification of models).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Zhidkin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Eremina

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golosov, V.N., Zhidkin, A.P., Petel’ko, A.I. et al. Field Verification of Erosion Models Based on the Studies of a Small Catchment in the Vorobzha River Basin (Kursk oblast, Russia). Eurasian Soil Sc. 55, 1508–1523 (2022). https://doi.org/10.1134/S1064229322100040

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229322100040

Keywords:

Navigation