Skip to main content
Log in

Biological Activity of Urban Soils: Spatial Variability and Control Factors

  • SOIL BIOLOGY
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

An assessment of the spatial variability of the biological activity of anthropogenic soils on the territory of the Lomonosov Moscow State University and the factors controlling it has been performed. The properties of the upper horizon of the studied soils expectably differ from those of natural zonal soils in higher pH values (6.1–7.2), a significant increase in the total carbon content (0.9–10.6%) and its stock in the upper 10-cm-thick layer (0.7–7.2 kg m–2). Most of the urban soils are characterized by increased values of microbial respiration (up to 8 mg C–CO2 kg–1 h–1) in comparison with those in natural zonal soils at approximately the same values of the CO2 emission from the surface (230–750 mg CO2 m–2 h–1). A high spatial variability of soil properties, such as moisture content, CO2 emission, total carbon content, microbial respiration, and cellulolytic activity in urban soils is controlled by both natural and anthropogenic factors. It increases in the following series: CO2 emission < microbial respiration < cellulolytic activity. The high spatial variability of soil properties makes it difficult to determine criteria for allocating sampling sites. The closest correlative relationships with environmental factors have been found for microbial respiration. According to our data, the main predictors of microbial respiration are the contents of carbon and moisture, and the correlation with moisture is higher (r = 0.87, р = 0.0002). A significant enrichment of urban soils with carbon determines the potential for an increase in the CO2 flux upon changes in the parameters of soil functioning. Difficulties in the interpretation of the results arise due to the unaccounted anthropogenic factors of variability, which are not included to the common set for such studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Yu. I. Baeva, I. N. Kurganova, V. O. Lopes de Gerenyu, A. V. Pochikalov, and V. N. Kudeyarov, ''Changes in physical properties and carbon stocks of gray forest soils in the southern part of Moscow region during postagrogenic evolution,'' Eurasian Soil Sci. 50 (3), 327-334 (2017). https://doi.org/10.1134/S1064229317030024

    Article  Google Scholar 

  2. A. A. Bobrik, O. Yu. Goncharova, G. V. Matyshak, I. M. Ryzhova, M. I. Makarov, and M. V. Timofeeva, '”Spatial distribution of the components of carbon cycle in soils of forest ecosystems of the northern, middle, and southern taiga of Western Siberia,” Eurasian Soil Sci. 53 (11), 1549-1560 (2020). https://doi.org/10.1134/S1064229320110058

    Article  Google Scholar 

  3. A. F. Vadyunina and Z. A. Korchagina, Methods for Studying Soil Physical Properties (Agropromizdat, Moscow, 1986) [in Russian].

    Google Scholar 

  4. E. G. Gavrilenko, E. A. Susyan, N. D. Anan’eva, and O. A. Makarov, ''Spatial variability in the carbon of microbial biomass and microbial respiration in soils of the south of Moscow oblast,'' Eurasian Soil Sci. 44 (10), 1125–1138 (2011). https://doi.org/10.1134/S106422931110005X

    Article  Google Scholar 

  5. O. Yu. Goncharova, O. V. Semenyuk, G. V. Matyshak, and A. A. Bobrik, “Seasonal dynamics of soil CO2 production in the arboretum of the Moscow State University botanical garden,” Moscow Univ. Soil Sci. Bull. 71 (2), 43–50 (2016).

    Article  Google Scholar 

  6. F. I. Zemskov, V. S. Galkin, N. A. Anokhina, L. G. Bogatyrev, A. N. Demidova, N. G. Prilepskii, N. I. Zhilin, A. I. Benediktova, “Methodical aspects of investigation of dynamic of litter fall input under conditions of stationary soil lysimeters,” Moscow Univ. Soil Sci. Bull. 72 (1), 7–12 (2017) https://doi.org/10.3103/S0147687417010082

    Article  Google Scholar 

  7. D. V. Karelin, A. I. Azovskii, A. S. Kumanyaev, and D. G. Zamolodchikov, “The meaning of spatial and temporal scales in the analysis of the factors of CO2 emission from soils in forests of the Valdai Upland,” Lesovedenie, No. 1, 29–37 (2019) https://doi.org/10.1134/S0024114819010078

    Article  Google Scholar 

  8. D. V. Karelin, A. V. Pochikalov, D. G. Zamolodchikov, and M. L. Gitarskii, “Spatiotemporal variability of CO2 fluxes from soils of southern taiga spruce forests of Valdai,” Contemp. Problems Ecol. 7 (7), 743–751 (2014). https://doi.org/10.1134/S1995425514070063

    Article  Google Scholar 

  9. Classification and Diagnostic System of Russian Soils (Oikumena, Smolensk, 2004), 342 pp. [in Russian].

  10. G. N. Koptsik, Yu. V. Kupriyanova, and M. S. Kadulin, “Spatial variability of carbon dioxide emission by soils in the main types of forest ecosystems at the Zvenigorod biological station of Moscow State University,” Moscow Univ. Soil Sci. Bull. 73 (2), 81–88 (2018).

    Article  Google Scholar 

  11. G. F. Lakin, Biometry: Handbook for Biological Specialties of Universities, (Vysshaya Shkola, Moscow, 1990) [in Russian].

    Google Scholar 

  12. Methods of Soil Microbiology and Biochemistry, Ed. by D. G. Zvyagintsev (Izd. Mosk. Univ., Moscow, 1991) [in Russian].

    Google Scholar 

  13. Soils of Moscow Oblast and Their Use, (Pochv. Inst. im. V.V. Dokuchaeva, Moscow, 2002), Vol. 1, p. 500 [in Russian].

    Google Scholar 

  14. T. V. Prokofeva and M. I. Gerasimova ''Urban soils: diagnostics and taxonomic position according to materials of scientific excursion in Moscow at the Suitma-9 workshop,'' Eurasian Soil Sci. 51 (9), 995–1008 (2019). https://doi.org/10.1134/S1064229318090090

    Article  Google Scholar 

  15. A. V. Rappoport, Candidate’s Dissertation in Biology (Moscow, 2004).

  16. M. S. Rozanova, T. V. Prokof’eva, L. V. Lysak, and A. A. Rakhleeva, ''Soil Organic Matter in the Moscow State University Botanical Garden on the Vorob’evy Hills,'' Eurasian Soil Sci. 49 (9), 1013–1025 (2016). https://doi.org/10.1134/S106422931609012X

    Article  Google Scholar 

  17. I. M. Ryzhova and M. A. Podvezennaya, “Spatial variability of the organic carbon pool in soils of forest and steppe biogeocenoses,” Eurasian Soil Sci. 41 (12), 1260–1267 (2008). https://doi.org/10.1134/S106422930812003X

    Article  Google Scholar 

  18. O. V. Semenyuk, M. A. Il’yashenko, and A. A. Bobrik, “Assessment of ecological functions of park soils on the basis of their biological activity,” Problemy Agrokhimii Ekologii, No. 3, 35–39 (2013).

    Google Scholar 

  19. O. V. Semenyuk, V. M. Telesnina, L. G. Bogatyrev, and A. I. Benediktova, “Structural and functional organization of forest litters as indicators of biological cycling intensity in urban forest stands (an example of Moscow),'' Eurasian Soil Sci. 54 (5), 738–749 (2021). https://doi.org/10.1134/S1064229321050173

    Article  Google Scholar 

  20. A. V. Smagin, A. V. Dolgikh, and D. V. Karelin, “Theoretical and experimental substantiation of a thermogravimetric method for assessing the water-retention capacity and specific surface area of disperse systems,'' Eurasian Soil Sci. 49 (12), 1382–1391 (2016). https://doi.org/10.1134/S1064229316100136

    Article  Google Scholar 

  21. A. V. Smagin, M. V. Smagina, and N. B. Sadovnikova, “Biological oxygen demand in soils and litters,'' Eurasian Soil Sci. 51 (3), 296–308 (2018). https://doi.org/10.1134/S1064229318010143

    Article  Google Scholar 

  22. G. V. Stoma and E. V. Akhadova. “Characteristics and ecological status of soils in the area of Moscow State University,” Moscow Univ. Soil Sci. Bull. 70 (1), 29–35 (2015). https://doi.org/10.3103/S0147687415010056

    Article  Google Scholar 

  23. N. P. Chizhikova, I. A. Verkhovets, N. E. Pervova, M. P. Lebedeva, E. B. Skvortsova, G. V. Zolotarev, and D. V. Savel’ev, Initial Stages of Soil Formation on Mantle Loam (A Model Experiment) (Izhevsk, 2016) [in Russian].

  24. J. Bae and Y. Ryu, “Land use and land cover changes explain spatial and temporal variations of the soil organic carbon stocks in a constructed urban park,” Landscape and Urban Planning 136, 57–67 (2015).https://doi.org/10.1016/j.landurbplan.2014.11.015

    Article  Google Scholar 

  25. V. Bellucco, S. Marras, C. S. B. Grimmond, L. Jarvi, C. Sirca, D. Spano, “Modelling the biogenic CO2 exchange in urban and non-urban ecosystem through the assessment of light-response curve parameters,” Agric. For. Meteorol. 236, 113–122 (2017). https://doi.org/10.1016/j.agrformet.2016.12.011

    Article  Google Scholar 

  26. P. Bullock and P. J. Gregory, “Soils: a neglected resource in urban areas,” in Soils in the Urban Environment (Blackwell Scientific Publications, Oxford, 1991), pp. 1–5.

    Book  Google Scholar 

  27. T. Caruso, M. Migliorini, E. Rota, and R. Bargagli, “Highly diverse soil urban communities: does stochasticity play a major role?,” Appl. Soil. Ecol. 110, 73–78 (2017).https://doi.org/10.1016/j.apsoil.2016.10.012

    Article  Google Scholar 

  28. H. Chen, W. Zhang, F. Gilliam, L. Liu, J. Huang, T. Zhang, W. Wang, J. Mo, “Changes in soil carbon sequestration in Pinus massoniana forests along an urban-to-rural gradient of southern China,” Biogeosciences 10, 6609–6616 (2013). https://doi.org/10.5194/bg-10-6609-2013

    Article  Google Scholar 

  29. C. R. De Kimpe and J. L. Morel, “Urban Soil Management: a Growing Concern,” Soil Sci. 165 (1), 31–40 (2000).https://doi.org/10.1097/00010694-200001000-00005

    Article  Google Scholar 

  30. M. Decina, L. R. Hutyra, C. K. Gately, J. M. Getson, A. B. Reinmann, A. G. Short Gianotti, and P. H. Temple, “Soil respiration contributes substantially to urban carbon fluxes in the greater Boston area,” Environ. Poll. 212, 433–439 (2016). https://doi.org/10.1016/j.envpol.2016.01.012

    Article  Google Scholar 

  31. D. Gill and P. A. Bonnett, Nature in the Urban Landscape: A Study of City Ecosystems, (York, Baltimore, 1973).

    Google Scholar 

  32. O. Goncharova, G. Matyshak, M. Udovenko, O. Semenyuk, H. Epstein, A. Bobrik, “Temporal Dynamics, Drivers, and Components of Soil Respiration in Urban Forest Ecosystems,” Catena 185, 104299 (2020).https://doi.org/10.1016/j.catena.2019.104299

    Article  Google Scholar 

  33. O. Y. Goncharova, G. V. Matyshak, M. M. Udovenko, A. A. Bobrik, O. V. Semenyuk, “Seasonal and annual variations in soil respiration of the artificial landscapes (Moscow Botanical Garden),” in Urbanization: Challenge and Opportunity for Soil Functions and Ecosystem Services (Springer Intern. Publ., Cham, 2019), pp. 112–122.https://doi.org/10.1007/978-3-319-89602-1_15

  34. L. R. Hutyra, R. Duren, K. Gurney, N. B. Grimm, E. Kort, E. Larson, G. Shrestha, “Urbanization and the carbon cycle: current capabilities and research outlook from the natural sciences perspective,” Earth’s Future 2 (10), 473–495 (2014).https://doi.org/10.1002/2014EF000255

    Article  Google Scholar 

  35. International Energy Agency, World Energy Outlook 2008, https://doi.org/10.1787/weo-2008-en

  36. IUSS Working Group WRB. World Reference Base for Soil Resources 2014, update 2015. World Soil Resources Rep. No. 106 (FAO, Rome).

  37. C. Kennedy, J. Steinberge, B. Gasson, Y. Hansen, T. Hillman, M. Havranek, D. Pataki, A. Phdungsilp, A. Ramaswami, G. V. Mendez, “Methodology for inventorying greenhouse gas emissions from global cities,” Energy Policy 38 (9), 4828–4837 (2010).https://doi.org/10.1016/j.enpol.2009.08.050

    Article  Google Scholar 

  38. I. N. Kurganova, V. N. Kudeyarov, De. Lopes, and V. Gerenyu, “Updated estimate of carbon balance on Russian territory,” Tellus B: Chemical and Physical Meteorol. 62 (5), 497–505 (2010).https://doi.org/10.1111/j.1600-0889.2010.00467.x

    Article  Google Scholar 

  39. Z. Liu, C. He, Y. Zhou, and J. Wu, “How much of the world’s land has been urbanized, really? a hierarchical framework for avoiding confusion,” Landsc. Ecol 29, 763–771 (2014).https://doi.org/10.1007/s10980-014-0034-y

    Article  Google Scholar 

  40. K. Lorenz and R. Lal, “Biogeochemical C and N cycles in urban soils,” Environ. Int. 35, 1–8 (2009).https://doi.org/10.1016/j.envint.2008.05.006

    Article  Google Scholar 

  41. K. Lorenz and R. Lal, “Managing soil carbon stocks to enhance the resilience of urban ecosystems,” Carbon Management 6, 35–50 (2015).https://doi.org/10.1080/17583004.2015.1071182

    Article  Google Scholar 

  42. J. G. Martin and P. V. Bolstad, “Variation of soil respiration at three spatial scales: components within measurements, intra-site variation and patterns on the landscape,” Soil Biol. Biochem. 41(3), 530–543 (2009).https://doi.org/10.1016/j.soilbio.2008.12.012

    Article  Google Scholar 

  43. I. A. Martynenko, J. L. Meshalkina, A. V. Rappoport, and T. V. Shabarova, “Spatial heterogeneity of some soil properties of the botanical garden of Lomonosov Moscow State University,” in Urbanization: Challenge and Opportunity for Soil Functions and Ecosystem Services (Springer Intern. Publ., Cham, 2019), pp. 185–194.https://doi.org/10.1007/978-3-319-89602-1_22

  44. B. J. Ng, L. R. Hutyra, H. Nguyen, A. R. Cobb, F. M. Kai, C. Harvey, L. Gandois, “Carbon fluxes from an urban tropical grassland,” Environ. Pollut. 203, 227–234 (2014).https://doi.org/10.1016/jenvpol.2014.06.009

  45. A. Ossola and S. J. Livesley, “Drivers of soil heterogeneity in the urban landscape,” in Urban Landscape Ecology: Science, Policy and Practice, (Routledge, New York, 2015).

    Google Scholar 

  46. S. T. A. Pickett, M. L. Cadenasso, J. M. Grove, C. G. Boone, P. M. Groffman, E. Irwin, P. Warren, “Urban ecological systems: scientific foundations and a decade of progress,” J. Environ. Managem. 2 (3), 331–362 (2011). https://doi.org/10.1016/j.jenvman.2010.08.022

    Article  Google Scholar 

  47. R. V. Pouyat, P. M. Groffman, I. Yesilonis, and L. Hernandez, “Soil carbon pools and fluxes in urban ecosystems,” Environ. Pollut. 116, 107–118 (2002). https://doi.org/10.1016/S0269-7491(01)00263-9

    Article  Google Scholar 

  48. R. V. Pouyat, I. D. Yesilonis, and D. Nowak, “Carbon storage in urban soils in the United States,” J. Environ. Qual. 35, 1566–1575 (2006). https://doi.org/10.2134/jeq2005.0215

    Article  Google Scholar 

  49. D. Satterthwaite, “Cities contribution to global warming: notes on the allocation of greenhouse gas emissions,” Environ. Urbaniz. 20 (2), 539–549 (2008). https://doi.org/10. 1177/0956247808096127

  50. U. Schleus, Q. Wu, and H-P. Blume, “Variability of soils in urban and periurban areas in northern Germany,” Catena 33 (3–4), 255–270 (1998).https://doi.org/10.1016/S0341-8162(98)00070-8

    Article  Google Scholar 

  51. J. Subke, A. Heinemeyer, and M. Reichstein, “Experimental design: scaling up in time and space, and its statistical considerations,” in Soil Carbon Dynamics: An Integrated Methodology (Cambridge Univ. Press, 2010). https://doi.org/10.1017/CBO9780511711794.004

  52. Nations. United, DESA/Population division. Revision of World Urbanization Prospects. (United Nations, New York, 2018).

  53. V. Vasenev and Y. Kuzyakov, “Urban soils as hot spots of anthropogenic carbon accumulation: review of stocks, mechanisms and driving factors,” Land Degrad. Develop. 29, 1607–1622 (2018).

    Article  Google Scholar 

  54. Y.-G. Zhao, G.-L. Zhang, H. Zepp, and J.-L. Yang, “Establishing a spatial grouping base for surface soil properties along urban-rural gradient—a case study in Nanjing, China,” Catena 69, 74–81 (2007).https://doi.org/10.1016/j.catena.2006.04.017

    Article  Google Scholar 

Download references

Funding

This study was carried out within the framework of state assignment “Parameters of the transformation of biogeochemical cycles of biogenic elements in natural and anthropogenic ecosystems” and the Development Program of the Interdisciplinary Scientific and Educational School of Lomonosov Moscow State University “The future of the planet and global environmental changes.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Yu. Goncharova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Klyueva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goncharova, O.Y., Semenyuk, O.V., Matyshak, G.V. et al. Biological Activity of Urban Soils: Spatial Variability and Control Factors. Eurasian Soil Sc. 55, 1082–1094 (2022). https://doi.org/10.1134/S1064229322080038

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229322080038

Keywords:

Navigation