Skip to main content

Advertisement

Log in

Approaches and Methods for Studying Soil Organic Matter in the Carbon Polygons of Russia (Review)

  • APPROACHES AND METHODS FOR STUDYING SOIL ORGANIC MATTER
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract—

Development of carbon polygons for monitoring the emission and deposition of carbon compounds in terrestrial ecosystems is one of the priority tasks in the case of climate and biosphere conservation. Significant is the role of soils, which are not only the main source of greenhouse gas emissions into the Earth’s atmosphere but also a long-term reservoir that stores significant amounts of organic carbon in the form of soil humus. The article discusses the organization of monitoring of greenhouse gases at carbon polygons, the methods of sampling soil horizons, and methodological approaches to determine the content and stocks of organic carbon in soils. The importance of information on the qualitative and quantitative composition of soil organic matter and humic substances, which is necessary for the operation of modern simulation models and calculation of carbon units for the economic assessment of the direct and reverse carbon footprint have been revealed. Russia faces a number of challenges related to carbon offset and a low-carbon economy. The necessary volumes of monitoring data, which must be obtained at carbon polygons for the use of the ROMUL and Efimod models are considered. The necessity for an adequate spatial coverage of the territory of Russia with a network of carbon polygons is emphasized. Particular attention should be paid to the arctic territories that contain significant amounts of organic matter in permafrost and can become precursors of the formation and emission of significant amounts of carbon dioxide and methane into the atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. N. I. Bazilevich, A. A. Titlyanova, and A. A. Tishkov, Biotic Cycling on Five Continents: Nitrogen and Ash Elements in Natural Terrestrial Ecosystems (Siberian Branch, Russian Academy of Sciences, Novosibirsk, 2008) [in Russian].

  2. L. A. Grishina, Humification and Humus State of Soils (Moscow State Univ., Moscow, 1986) [in Russian].

    Google Scholar 

  3. G. V. Dobrovol’skii, Soils of River floodplains in the Center of the Russian Plain (Moscow State Univ., Moscow, 2005) [in Russian].

    Google Scholar 

  4. A. L. Ivanov, I. Yu. Savin, V. S. Stolbovoi, Yu. A. Dukhanin, and D. N. Kozlov, “Methodological approaches to the compilation of a unified national system for monitoring and recording the balance of carbon and greenhouse gas emissions on the agricultural lands of the Russian Federation,” Byull. Pochv. Inst. im. V.V. Dokuchaeva, No. 108, 175–218 (2021).

    Google Scholar 

  5. A. L. Ivanov and V. S. Stolbovoi, “The Initiative “4 per 1000” is a new global challenge for soils of Russia,” Byull. Pochv. Inst. im. V.V. Dokuchaeva, No. 98, 185–202 (2019).

    Google Scholar 

  6. B. M. Kogut and A. S. Frid, “Comparative evaluation of determination methods of the content of humus in soils,” Pochvovedenie, No. 9, 119–123 (1993).

    Google Scholar 

  7. M. M. Kononova, Soil Organic Matter: Nature, Properties, and Study Methods (Academy of Sciences of the USSR, Moscow, 1963) [in Russian].

    Google Scholar 

  8. S. S. Morkovina, E.A. Panyavina, I. I. Shanin, and I. A. Avdeeva, “Economic aspects of organization of carbon farms on forest lands,” Aktual. Napravleniya Nauchn. Issled. XXI Veka: Teor. Prakt. 9 (1), 17–25 (2021).

    Google Scholar 

  9. The Kyoto Protocol. Kyoto Protocol to the United Nations Framework Convention on Climate Change (United Nations, New York, 1998).

  10. D. S. Orlov, Soil Humic Acids and the General Theory of Humification (Moscow State Univ., Moscow, 1990) [in Russian].

    Google Scholar 

  11. D. S. Orlov, Chemistry of Soils (Moscow State Univ., Moscow, 1992) [in Russian].

    Google Scholar 

  12. The Paris Agreement, 2015. https://unfccc.int/sites/ default/files/english_paris_agreement.pdf. Cited November 24, 2021.

  13. Order of the Ministry of Education and Science of Russia No. 74 of February 5, 2021 “On Test Sites for the Development and Testing of Carbon Balance Control Technologies” (Ministry of Education and Science of the Russian Federation, Moscow, 2021) [in Russian].

  14. Order of the Ministry of Natural Resources and Ecology of the Russian Federation “Guide for Quantitative Analysis of Greenhouse Gas Consumption” (Moscow, 2017) [in Russian].

  15. Decree of the President of the Russian Federation “On Measures for Implementation of the State Scientific-Technical Policy in the Field of Environmental Development of the Russian Federation and Climate Change” (Moscow, 2021) [in Russian].

  16. Russian Federation: UN Sustainable Development Goals (Analytical Center for the Government of the Russian Federation, Moscow, 2016) [in Russian].

  17. S. N. Chukov, Structural and Functional Parameters of Soil Organic Matter under Anthropogenic Impact (St. Petersburg State Univ., St. Petersburg, 2001) [in Russian].

    Google Scholar 

  18. E. V. Abakumov and A. I. Popov, “Determination of the carbon and nitrogen contents and oxidizability of organic matter and the carbon of carbonates content in one soil sample,” Eurasian Soil Sci. 38, 165–172 (2005).

    Google Scholar 

  19. E. Abakumov, E. Maksimova, and A. Tsibart, “Assessment of postfire soils degradation dynamics: Stability and molecular composition of humic acids with use of spectroscopy methods,” Land Degrad. Dev. 29 (7), 2092–2101 (2018).

    Article  Google Scholar 

  20. E. Abakumov, E. Morgun, A. Pechkin, and V. Polyakov, “Abandoned agricultural soils from the central part of the Yamal region of Russia: morphology, diversity, and chemical properties,” Open Agric. 5 (1), 94–106 (2020).

    Article  Google Scholar 

  21. E. V. Abakumov, V. I. Polyakov, and K. S. Orlova, “Podzol development on different aged coastal bars of Lake Ladoga,” Vestn. Tomsk. Gos. Univ., Biol. 48, 6–31 (2019).

    Google Scholar 

  22. E. Abakumov and V. Polyakov, “Carbon polygons and carbon offsets: current state, key challenges and pedological aspects,” Agronomy 11 (10), (2021).

  23. I. Alekseev and E. Abakumov, “Permafrost-affected former agricultural soils of the Salekhard city (Central part of Yamal region),” Czech Polar Rep. 8 (1), 119–131 (2018).

    Article  Google Scholar 

  24. D. D. Baldocchi, “Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past, present and future,” Global Change Biol. 9 (4), 479–492 (2003).

    Article  Google Scholar 

  25. T. Becker, L. Kutzbach, I. Forbrich, J. Schneider, D. Jager, B. Thees, and M. Wilmking, “Do we miss the hot spots?—The use of very high resolution aerial photographs to quantify carbon fluxes in peatlands,” Biogeosciences 5 (5), 1387–1393 (2008).

    Article  Google Scholar 

  26. L. Beyer, C. Sorge, H. P. Blume, and H. R. Schulten, “Soil organic matter composition and transformation in gelic histosols of coastal continental Antarctica,” Soil Biol. Biochem. 27 (10), 1279–1288 (1995).

    Article  Google Scholar 

  27. J. S. Bhatti, M. J. Apps, and C. Tarnocai, “Estimates of soil organic carbon stocks in central Canada using three different approaches,” Can. J. For. Res. 32 (5), 805–812 (2002).

    Article  Google Scholar 

  28. A. G. Bumpus, “The matter of carbon: understanding the materiality of tCO2e in carbon offsets,” Antipode 43 (3), 612–638 (2011).

    Article  Google Scholar 

  29. Circumpolar Active Layer Monitoring Network (CALM), Long-term observations of the climate-active layer-permafrost system, 1991. https://www2.gwu.edu/ ~calm/. Cited November 24, 2021.

  30. CARBOPERM, CarboPerm: An interdisciplinary Russian-German project on the formation, turnover and release of carbon in Siberian permafrost landscapes, 2013. https://www.geo.uni-hamburg.de/en/bodenkunde/ f-orschung/abgeschlossene-projekte/carboperm.html Cited November 24, 2021.

  31. O. Chertov and M. Nadporozhskaya, “Development and application of humus form concept for soil classification, mapping and dynamic modeling in Russia,” Appl. Soil Ecol. 123, 420–423 (2018).

    Article  Google Scholar 

  32. O. G. Chertov, A. S. Komarov, M. Nadporozhskaya, S. S. Bykhovets, and S. L. Zudin, “ROMUL—A model of forest soil organic matter dynamics as a substantial tool for forest ecosystem modeling,” Ecol. Model. 138 (1–3), 289–308 (2001).

    Article  Google Scholar 

  33. C. van Kooten and C. M. T. Johnston, “The economics of forest carbon offsets,” Annu. Rev. Resour. Econ. 8 (1), 227–246 (2016).

    Article  Google Scholar 

  34. E. A. Davidson and I. A. Janssens, “Temperature sensitivity of soil carbon decomposition and feedbacks to climate change,” Nature 440 (7081), 165–173 (2006).

    Article  Google Scholar 

  35. Y. A. Dvornikov, V. I. Vasenev, O. N. Romzaykina, V. E. Grigorieva, Y. A. Litvinov, S. N. Gorbov, A. V. Dolgikh, M. V. Korneykova, and D. D. Gosse, “Projecting the urbanization effect on soil organic carbon stocks in polar and steppe areas of European Russia by remote sensing,” Geoderma 399, 115039 (2021).

    Article  Google Scholar 

  36. E. Ejarque and E. Abakumov, “Stability and biodegradability of organic matter from Arctic soils of Western Siberia: insights from 13C-NMR spectroscopy and elemental analysis,” Solid Earth 7 (1), 153–165 (2016).

    Article  Google Scholar 

  37. Directive of the European Parliament and of the Council, European Commission, 2021. https://ec.europa.eu/ info/sites/default/files/revision-eu-ets_with-annex_en_ 0.pdf. Cited December 2, 2021.

  38. Status of the World’s Soil Resources: Main Report (UN Food and Agriculture Organization, Rome, 2015).

  39. Recarbonizing Global Soils: A Technical Manual of Recommended Sustainable Soil Management, Vol. 2: Hot Spots and Bright Spots of Soil Organic Carbon, (UN Food and Agriculture Organization, Rome, 2021).

  40. Y. Gao and J. Couwenberg, “Carbon accumulation in a permafrost polygon peatland: steady long-term rates in spite of shifts between dry and wet conditions,” Global Change Biol. 21 (2), 803–815 (2015).

    Article  Google Scholar 

  41. Glasgow Climate Pact CP 26 (Glasgow, 2021).

  42. Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Ed. by R.K. Pachauri and A. Reisinger (Intergovernmental Panel on Climate Change, Geneva, 2007).

    Google Scholar 

  43. D. Karelin, S. Goryachkin, A. Kudikov, V. L. De Gerenu, V. Lunin, A. Dolgikh, and D. Lyuri, “Changes in carbon pool and CO2 emission in the course of postagrogenic succession on gray soils (Luvic Phaeozems) in European Russia,” Eurasian Soil Sci. 50, 559–572 (2017).

    Article  Google Scholar 

  44. N. B. Khitrov, “An approach for a retrospective assessment of soil changes,” Eurasian Soil Sci. 41, 793–804 (2008).

    Article  Google Scholar 

  45. V. I. Kiryushin, “Methodology for integrated assessment of agricultural land,” Eurasian Soil Sci. 53, 960–967 (2020).

    Article  Google Scholar 

  46. V. I. Kiryushin, N. N. Dubachinskaya, and A. Yu. Yurova, “Comprehensive assessment of agricultural land by the example of the Southern Urals,” Eurasian Soil Sci. 54, 1721–1772 (2021).

    Article  Google Scholar 

  47. C. Knoblauch, C. Beer, S. Liebner, M. N. Grigoriev, and E. M. Pfeiffer, “Methane production as key to the greenhouse gas budget of thawing permafrost,” Nat. Clim. Change 8, 309–312 (2018).

    Article  Google Scholar 

  48. C. Knoblauch, C. Beer, A. Sosnin, D. Wagner, and E. M. Pfeiffer, “Predicting long-term carbon mineralization and trace gas production from thawing permafrost of Northeast Siberia,” Global Change Biol. 19 (4), 1160–1172 (2013).

    Article  Google Scholar 

  49. V. N. Kudeyarov, “Soil-biogeochemical aspects of arable farming in the Russian Federation,” Eurasian Soil Sci. 52, 94–104 (2019).

    Article  Google Scholar 

  50. S. Ya. Kudryashova, K. S. Baikov, A. A. Titlyanova, L. Yu. Dits, N. P. Kosykh, I. D. Makhatkov, and S. V. Shibareva, “Distributed GIS for estimation of soil carbon stock of West Siberia boreal zone,” Contemp. Probl. Ecol. 4, 475–486 (2011).

    Article  Google Scholar 

  51. LEAP: Measuring and Modeling Soil Carbon Stocks and Stock Changes in Livestock Production Systems: Guidelines for Assessment (Version 1) (UN Food and Agriculture Organization, Rome, 2019).

  52. C. Lefèvre, F. Rekik, V. Alcantara, and L. Wiese, Soil Organic Carbon: The Hidden Potential (UN Food and Agriculture Organization, Rome, 2017).

    Google Scholar 

  53. Project Lena Delta: A base for Russian-German permafrost research in Siberia, 1998. https://www.awi.de/ en/expedition/stations/island-samoylov.html?L=1. Cited November 24, 2021.

  54. E. D. Lodygin, V. A. Beznosikov, and R. S. Vasilevich, “Molecular composition of humic substances in tundra soils (13C-NMR spectroscopic study),” Eurasian Soil Sci. 47, 400–406 (2014).

    Article  Google Scholar 

  55. M. C. Mack, X. J. Walker, J. F. Johnstone, H. D. Alexander, A. M. Melvin, M. Jean, and S. N. Miller, “Carbon loss from boreal forest wildfires offset by increased dominance of deciduous trees,” Science 372 (6539), 280–283 (2021).

    Article  Google Scholar 

  56. U. Mishra, G. Hugelius, E. Shelef, Y. Yang, J. Strauss, A. Lupachev, et al., “Spatial heterogeneity and environmental predictors of permafrost region soil organic carbon stocks,” Sci. Adv. 7 (9), eaaz5236 (2021).

  57. M. Muñoz-Rojas, A. Jordán, L. M. Zavala, D. De La Rosa, S. K. Abd-Elmabod, and M. Anaya-Romero, “Organic carbon stocks in Mediterranean soil types under different land uses (Southern Spain),” Solid Earth 3 (2), 375–386 (2012).

    Article  Google Scholar 

  58. M. A. Nadporozhskaya, O.G. Chertov, S.S. Bykhovets, C.H. Shaw, E.Y. Maksimova, and E.V. Abakumov, “Recurring surface fires cause soil degradation of forest land: A simulation experiment with the EFIMOD model,” Land Degrad. Dev. 29 (7), 2222–2232 (2018).

    Article  Google Scholar 

  59. M. Okoneshnikova, “Current state and prediction of changes in soils of the middle Lena valley (Central Yakutia),” Vestn. Tomsk. Gos. Univ., Biol. 3 (23), 7–18 (2013).

    Google Scholar 

  60. Pangea, Data publisher for Earth & environmental science, 1995. https://www.pangaea.de/. Cited December 2, 2021.

  61. V. Polyakov, K. Orlova, and E. Abakumov, “Evaluation of carbon stocks in the soils of Lena River delta on the basis of application of “dry combustion” and Tyurin’s methods of carbon determination,” Biol. Commun. 62 (2), 67–72 (2017).

    Article  Google Scholar 

  62. I. V. Priputina, S. S. Bykhovets, P. V. Frolov, O. G. Chertov, I. N. Kurganova, V. O. Lopes de Gerenyu, D. V. Sapronov, and T. N. Mjakshina, “Application of mathematical models ROMUL and Romul_Hum for estimating CO2 emission and dynamics of organic matter in Albic Luvisol under deciduous forest in the south of Moscow oblast,” Eurasian Soil Sci. 53, 1480–1491 (2020).

    Article  Google Scholar 

  63. Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories, 2019. https://www.ipcc-nggip.iges.or.jp/public/2019rf/index.html. Cited November 24, 2021.

  64. Report of the 27th Session of the Committee on Agriculture (September 28–October 2, 2020) (UN Food and Agriculture Organization, Rome, 2020).

  65. I. M. Ryzhova, V. M. Telesnina, and A. A. Sitnikova, “Dynamics and structure of carbon storage in the postagrogenic ecosystems of the southern taiga,” Eurasian Soil Sci. 53, 240–252 (2020).

    Article  Google Scholar 

  66. D. G. Schepaschenko, L. V. Mukhortova, A. Z. Shvidenko, and E. F. Vedrova, “The pool of organic carbon in the soils of Russia,” Eurasian Soil Sci. 46, 107–116 (2013).

    Article  Google Scholar 

  67. E. A. G. Schuur, A. D. McGuire, C. Schädel, G. Grosse, J. W. Harden, D. J. Hayes, G. Hugelius, C. D. Koven, P. Kuhry, D. M. Lawrence, S. M. Natali, D. Olefeldt, V. E. Romanovsky, K. Schaefer, M. R. Turetsky, et al., “Climate change and the permafrost carbon feedback,” Nature 520 (7546), 171–179 (2015).

    Article  Google Scholar 

  68. V. N. Shanin, S. S. Bykhovets, O. G. Chertov, and A. S. Komarov, “The effect of various external factors on dynamics of organic carbon in different types of forest: a simulation-based assessment,” Russ. For. Sci. 5, 335–346 (2018).

    Google Scholar 

  69. V. Stolbovoy, “Carbon in agricultural soils of Russia,” in Proceedings of an OECD Expert Meeting “Soil Organic Carbon and Agriculture: Developing Indicators for Policy Analyses,” Ottawa (Paris, 2002), pp. 301–306.

  70. A. A. Titlyanova and A. D. Sambuu, “Determinacy and synchronicity of fallow succession in the Tuva steppes,” Biol. Bull. (Moscow) 41, 545–553 (2014).

    Article  Google Scholar 

  71. W. H. Tsai, “Carbon emission reduction-carbon tax, carbon trading, and carbon offset,” Energies 13, (2020).

  72. V. Vanchikova, V. Shamrikova, A. Zaboeva, Y. Bobrova, E. Kyz’yurova, N. Bespyatykh, and N. Grishchenko, “Comparative assessment of the methods for exchangeable acidity measuring,” Eurasian Soil Sci. 49, 512–518 (2016).

    Article  Google Scholar 

  73. R. Vasilevich, E. Lodygin, V. Beznosikov, and E. Abakumov, “Molecular composition of raw peat and humic substances from permafrost peat soils of European Northeast Russia as climate change markers,” Sci. Total Environ. 615, 1229–1238 (2018).

    Article  Google Scholar 

  74. M. Wara and D. G. Victor, A Realistic Policy on International Carbon Offsets, Program on Energy and Sustainable Development Working Paper No. 74 (Stanford, CA, 2008), pp. 1–24.

  75. IUSS Working Group WRB, World Reference Base for Soil Resources 2014, Update 2015, International Soil Classification System for Naming Soils and Creating Legends for Soil Maps, World Soil Resources Reports No. 106 (UN Food and Agriculture Organization, Rome, 2015).

    Google Scholar 

  76. J. Yu and M. L. Mallory, “Carbon price interaction between allocated permits and generated offsets,” Oper. Res. 20 (2), 671–700 (2020).

    Google Scholar 

  77. A. Zanella, J. F. Ponge, J. M. Gobat, J. Juilleret, M. Blouin, M. Aubert, O. Chertov, and J. L. Rubio, “Humusica 1, article 1: Essential bases—Vocabulary,” Appl. Soil Ecol. 122, 10–21 (2018).

    Article  Google Scholar 

  78. A. G. Zavarzina, N. N. Danchenko, V. V. Demin, Z. S. Artemyeva, and B. M. Kogut, “Humic substances: hypotheses and reality (a review),” Eurasian Soil Sci. 54, 1826–1854 (2021).

    Article  Google Scholar 

  79. S. Zubrzycki, L. Kutzbach, G. Grosse, and A. Desyatkin, “Organic carbon and total nitrogen stocks in soils of the Lena River Delta,” Biogeosciences 10 (6), 3507–3524 (2013).

    Article  Google Scholar 

  80. S. Zubrzycki, L. Kutzbach, and E. M. Pfeiffer, “Permafrost-affected soils and their carbon pools with a focus on the Russian Arctic,” Solid Earth 5 (2), 595–609 (2014).

    Article  Google Scholar 

Download references

Funding

This study was supported by the “Agrotechnologies of the Future” Center for World-Level Research Centers in Russia, project no. 075-15-2020-922 from November 16, 2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Polyakov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by D. Konyushkov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abakumov, E.V., Polyakov, V.I. & Chukov, S.N. Approaches and Methods for Studying Soil Organic Matter in the Carbon Polygons of Russia (Review). Eurasian Soil Sc. 55, 849–860 (2022). https://doi.org/10.1134/S106422932207002X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106422932207002X

Keywords: