Skip to main content
Log in

Soil Microbial Biomass and Functional Diversity of Microbial Communities in Native and Arable Soils of the Belogor’e Reserve

  • SOIL BIOLOGY
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

Microbial biomass and functional diversity of soil microbial communities in forest soils of the Belogor’e Nature Reserve and in arable soils formed under similar geomorphologic and lithological conditions were determined. We have analyzed the content of carbon of total microbial biomass (C–TMB), of the biomass of living microorganisms by the content of soil phospholipids (C–PL.), and of biomass of microbial cells capable of glucose assimilation (C–SIR). The respiratory response of the soil microbial community to the introduction of different groups of organic compounds-inductors (amino acids and carboxylic acids) was assessed by the method of multisubstrate testing (MST). It is shown that anthropogenic transformation of natural ecosystems results in a decrease in the total microbial biomass, biomass of living cells, and cells that give a respiratory response to glucose. The functional diversity of microbial communities in soils in natural and transformed ecosystems significantly differs. Soil plowing has resulted in a significant decrease in the ability of the soil microbial community to assimilate low-molecular organic compounds. This is most typical for amino acids: arginine, alanine, and glycine (a 2.7-, 5.4-, and 7.1-time decrease, respectively, as compared to native soils). Among carboxylic acids, the decrease in the respiratory response to the introduction of succinic acid is the most pronounced (8.7 times). It has been revealed that the geomorphologic position in natural ecosystems does not affect the biomass of the microbial community and its functional diversity, while the arable soils are characterized by a clear tendency to an increase in these parameters on the lower part of the slope.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. N. D. Anan’eva, E. V. Blagodatskaya, D. B. Orlinskii, and T. N. Myakshina, “Determination of the rate of substrate-induced respiration of soil microorganisms,” Pochvovedenie, No. 11, 72–77 (1993).

    Google Scholar 

  2. N. D. Ananyeva, E. A. Susyan, and E. G. Gavrilenko, “Determination of the soil microbial biomass carbon using the method of substrate-induced respiration,” Eurasian Soil Sci. 44, 1215–1221 (2011).

    Article  Google Scholar 

  3. S. N. Vinogradskii, Soil Microbiology: Problems and Study Methods. Fifty Years of Study (Moscow, 1952) [in Russian].

    Google Scholar 

  4. Theory and Practice of the Chemical Analysis of Soils, Ed. by L. A. Vorob’eva (GEOS, Moscow, 2006) [in Russian].

    Google Scholar 

  5. M. V. Gorlenko and P. A. Kozhevin, “Differentiation of soil microbial communities using multisubstrate testing,” Mikrobiologiya (Moscow) 63, 289–293 (1994).

    Google Scholar 

  6. M. V. Gorlenko and P. A. Kozhevin, Multisubstrate Testing of Natural Microbial Communities (MAKS Press, Moscow, 2005) [in Russian].

    Google Scholar 

  7. V. A. Demkin, B. N. Zolotareva, T. S. Demkina, T. E. Khomutova, N. N. Kashirskaya, M. V. El’tsov, and S. N. Udal’tsov, “Dynamics of the properties of steppe paleosols of the Sarmatian time (2nd century BC–4th century AD) in relation to secular variations in climatic humidity,” Eurasian Soil Sci. 45, 119–131 (2012).

    Article  Google Scholar 

  8. T. S. Demkina, T. E. Khomutova, A. V. Borisov, and V. A. Demkin, “Microbiological and molecular genetic studies of undermound paleosols of the Lower Volga region,” in Proceedings of the International Archeological Conf. “Archeology of Lower Volga Region” (Volgograd State Univ., Vogograd, 2004), pp. 338–343.

  9. G. A. Kasatkina, N. N. Fedorova, and A. V. Rusakov, “Soils and soil cover of the Belogorye Nature Reserve,” Vestn. S.-Peterb. Univ., Ser. 3: Biol., No. 1, 121–138 (2012).

  10. N. N. Kashirskaya, T. E. Khomutova, T. S. Demkina, and V. A. Demkin, “The microbial biomass in paleosols buried under kurgans and in recent soils in the steppe zone of the Lower Volga region,” Eurasian Soil Sci. 42, 536–542 (2009).

    Article  Google Scholar 

  11. N. N. Kashirskaya, T. E. Khomutova, E. V. Chernysheva, M. V. El’tsov, and V. A. Demkin, “Population density and total biomass of microbial communities in chestnut soils and solonetzes of the dry steppe zone in the Lower Volga region,” Eurasian Soil Sci. 48, 294–302 (2015).

    Article  Google Scholar 

  12. P. A. Kozhevin, L. M. Polyanskaya, and D. G. Zvyagintsev, “Dynamics of development of various microorganisms in soil,” Mikrobiologiya (Moscow) 48, 490–494 (1979).

    Google Scholar 

  13. Yu. V. Kruglov, “Soil microbial community: physiological diversity and study methods,” S-kh. Biol. 51 (1), 46–59 (2016).

    Google Scholar 

  14. L. V. Lysak and E. V. Lapygina, “The diversity of bacterial communities in urban soils,” Eurasian Soil Sci. 51, 1050–1056 (2018).

    Article  Google Scholar 

  15. A. S. Mostovaya, I. N. Kurganova, V. O. Lopes de Gerenyu, O. S. Khokhlova, A. V. Rusakov, and A. S. Shapovalov, “Dynamics of the microbiological activity of gray forest soils during natural reforestation,” Vestn. Voronezh. Gos. Univ., Ser. Khim., Biol., Farm., No. 2, 64–72 (2015).

  16. D. A. Nikitin, O. E. Marfenina, A. G. Kudinova, L. V. Lysak, N. S. Mergelov, A. V. Dolgikh, and A. V. Lupachev, “Microbial biomass and biological activity of soils and soil-like bodies in coastal oases of Antarctica,” Eurasian Soil Sci. 50, 1086–1097 (2017).

    Article  Google Scholar 

  17. D. A. Nikitin, L. V. Lysak, N. S. Mergelov, A. V. Dolgikh, E. P. Zazovskaya, and S. V. Goryachkin, “Microbial biomass, carbon stocks, and CO2 emission in soils of Franz Josef Land: high-Arctic tundra or polar deserts?” Eurasian Soil Sci. 53, 467–484 (2020).

    Article  Google Scholar 

  18. S. V. Rogovaya, E. Yu. Elsukova, and N. D. Anan’eva, “Microbial component of soils and its respiratory activity in coniferous forests of the northwestern Ladoga region,” Vestn. S.-Peterb. Univ., Nauki Zemle, No. 3, 129–137 (2016). https://doi.org/10.21638/11701/spbu07.2016.310

    Article  Google Scholar 

  19. S. V. Sushko, N. D. Anan’eva, K. V. Ivashchenko, V. I. Vasenev, and D. A. Sarzhanov, “Soil microbial respiration in field and laboratory conditions,” Agrofizika, No. 4, 17–23 (2016).

    Google Scholar 

  20. S. V. Sushko, N. D. Ananyeva, K. V. Ivashchenko, and V. N. Kudeyarov, “Emission, microbial biomass, and basal respiration of chernozems under different land uses,” Eurasian Soil Sci. 52, 1091–1100 (2019).

    Article  Google Scholar 

  21. L. S. Schastnaya and G. A. Kasatkina, “Soil-geographic studies in the Les Na Vorskle–Belogorye Nature Reserves,” Vestn. S.-Peterb. Univ., Ser. 3: Biol., No. 1, 81–88 (2006).

  22. A. R. Khabibulina, T. V. Vdovina, A. S. Sirotkin, I. Tregl, T. Brovdyova, and P. Kuran, “Analysis of microbial phospholipids in processes of biomonitoring of soil condition,” Izv. VUZov, Prikl. Khim. Biotekhnol. 9 (1), 44–52 (2019).

    Google Scholar 

  23. T. E. Khomutova, K. S. Dushchanova, V. E. Smirnov, and A. V. Borisov, “Succession of microbial community in gray forest soil during the decomposition of different organic compounds,” Eurasian Soil Sci. 52, 963–970 (2019).

    Article  Google Scholar 

  24. T. E. Khomutova, T. S. Demkina, and V. A. Demkin, “Estimation of the total and active microbial biomasses in buried subkurgan paleosoils of different age,” Microbiology (Moscow) 73, 196–201 (2004).

    Article  Google Scholar 

  25. T. E. Khomutova, T. S. Demkina, A. V. Borisov, and I. I. Shishlina, “State of microbial communities in paleosols buried under kurgans of the desert-steppe zone in the Middle Bronze Age (27th–26th centuries BC) in relation to the dynamics of climate humidity,” Eurasian Soil Sci. 50, 229–238 (2017).

    Article  Google Scholar 

  26. T. E. Khomutova and V. A. Demkin, “Assessment of the microbial biomass using the content of phospholipids in soils of the dry steppe,” Eurasian Soil Sci. 44, 686–692 (2011).

    Article  Google Scholar 

  27. T. E. Khomutova, N. N. Kashirskaya, and V. A. Demkin, “Assessment of the living and total biomass of microbial communities in the background chestnut soil and in the paleosols under burial mounds,” Eurasian Soil Sci. 44, 1373–1380 (2011).

    Article  Google Scholar 

  28. N. D. Ananyeva, S. V. Rogovaya, K. V. Ivashchenko, V. I. Vasenev, D. A. Sarzhanov, O. V. Ryzhkov, and V. N. Kudeyarov, “Carbon dioxide emission and soil microbial respiration activity of chernozems under anthropogenic transformation of terrestrial ecosystems,” Eur. J. Soil Sci. 5 (2), 146–154 (2016). https://doi.org/10.18393/ejss.2016.2.146-154

    Article  Google Scholar 

  29. J. P. E. Anderson and K. H. Domsch, “A physiological method for the quantitative measurement of microbial biomass in soils,” Soil Biol. Biochem. 10 (3), 215–221 (1978).

    Article  Google Scholar 

  30. K. Bargali, V. Manra, K. Padalia, S. S. Bargali, and V. P. Upadhyay, “Effect of vegetation type and season on microbial biomass carbon in Central Himalayan forest soils, India,” Catena 171, 125–135 (2018). https://doi.org/10.1016/j.catena.2018.07.001

    Article  Google Scholar 

  31. J. L. Garland and A. L. Mills, “Classification and characterization of heterotrophic microbial communities on the basis of patterns of community level sole-carbon-source utilization,” Appl. Environ. Microbiol. 57, 2351–2359 (1991).

    Article  Google Scholar 

  32. B. P. Degens and J. A. Harris, “Development of physiological approach to measuring the catabolic diversity of soil microbial communities,” Soil Biol. Biochem. 29, 1309–1320 (1997).

    Article  Google Scholar 

  33. M. A. Dippold and Y. Kuzyakov, “Direct incorporation of fatty acids into microbial phospholipids in soils: position-specific labelling tells the story,” Geochim. Cosmochim. Acta 174, 211–221 (2016). https://doi.org/10.1016/j.gca.2015.10.032

    Article  Google Scholar 

  34. R. H. Findlay, G. M. King, and L. Watling, “Efficacy of phospholipid analysis in determining microbial biomass in sediments,” Appl. Microbiol. 55 (11), 2888–2893 (1989).

    Google Scholar 

  35. R. Findlay, “The use of phospholipid fatty acids to determine microbial community structure,” in Molecular Microbial Ecology Manual (Springer-Verlag, Dordrecht, 1996), pp. 77–93.

    Google Scholar 

  36. A. Frostegard, A. Tunlid, and E. Baath, “Microbial biomass measured at total lipid phosphate in soils of different organic content,” J. Microbiol. Methods 14, 151–163 (1991).

    Article  Google Scholar 

  37. Z. Ge, H. Du, Y. Gao, and W. Qiu, “Analysis on metabolic functions of stored rice microbial communities by BIOLOG ECO microplates,” Front. Microbiol. 9, 1375 (2018). https://doi.org/10.3389/fmicb.2018.01375

    Article  Google Scholar 

  38. T. Khomutova, N. Kashirskaya, T. Demkina, T. Kuznetsova, F. Fornasier, N. Shishlina, and A. Borisov, “Precipitation pattern during warm and cold periods in the Bronze Age (around 4.5–3.8 ka BP) in the desert steppes of Russia: soil-microbiological approach for palaeoenvironmental reconstruction,” Quart. Int. 507, 84–94 (2019). https://doi.org/10.1016/j.quaint.2019.02.013

    Article  Google Scholar 

  39. T. E. Khomutova, T. S. Demkina, A. V. Borisov, N. N. Kashirskaya, M. V. Yeltsov, and V. A. Demkin, “An assessment of changes in properties of steppe kurgan paleosoils in relation to prevailing climates over recent millennia,” Quart. Res. 67 (3), 328–336 (2007).

    Article  Google Scholar 

  40. T. E. Khomutova, T. S. Demkina, and V. A. Demkin, “The state of microbial communities in buried paleosols in relation to prevailing climates in steppes of the Lower Volga region,” Quart. Int. 324, 115–123 (2014).

    Article  Google Scholar 

  41. T. E. Khomutova, N. N. Kashirskaya, T. S. Demkina, A. V. Borisov, I. V. Stretovich, and V. A. Demkin, “Microbial biomass in paleosols under burial mounds as related to changes in climatic conditions in the desert-steppe zone,” Eurasian Soil Sci. 39, 112–117 (2006).

    Article  Google Scholar 

  42. M. D. McDaniel and A. S. Grandy, “Soil microbial biomass and function are altered by 12 years of crop rotation,” Soil 2 (4), 583–599 (2016). https://doi.org/10.5194/soil-2-583-2016

  43. M. Rutgers, M. Wouterse, S. M. Drost, A. M. Breure, C. Mulder, D. Stone, and J. Bloem, “Monitoring soil bacteria with community-level physiological profiles using Biolog™ ECO-plates in the Netherlands and Europe,” Appl. Soil Ecol. 97, 23–35 (2016). https://doi.org/10.1016/j.apsoil.2015.06.007

    Article  Google Scholar 

  44. K. Sawada, S. Funakawa, and T. Kosaki, “Short-term respiration responses to drying–rewetting in soils from different climatic and land use conditions,” Appl. Soil Ecol. 103, 13–21 (2016). https://doi.org/10.1016/j.apsoil.2016.02.010

    Article  Google Scholar 

  45. J. S. Singh and V. K. Gupta, “Soil microbial biomass: a key soil driver in management of ecosystem functioning,” Sci. Total Environ. 634, 497–500 (2018). https://doi.org/10.1016/j.scitotenv.2018.03.373

    Article  Google Scholar 

  46. A. Sradnick, M. Oltmanns, J. Raupp, and R. G. Joergensen, “Microbial biomass and activity down the soil profile after long-term addition of farmyard manure to a sandy soil,” Org. Agric. 8 (1), 29–38 (2018).

    Article  Google Scholar 

  47. S. Sushko, N. Ananyeva, K. Ivashchenko, V.Vasenev, and V. Kudeyarov, “Soil CO2 emission, microbial biomass and microbial respiration of woody and grassy locations in Moscow (Russia),” J. Soils Sediments 19, 3217–3225 (2019). https://doi.org/10.1007/s11368-018-2151-8

    Article  Google Scholar 

  48. Y. Zhang, N. Zheng, J. Wang, H. Yao, Q. Qiu, and S. J. Chapman, “High turnover rate of free phospholipids in soil confirms the classic hypothesis of PLFA methodology,” Soil Biol. Biochem. 135, 323–330 (2019). https://doi.org/10.1016/j.soilbio.2019.05.023

    Article  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 19-34-50067. Terrain works were performed within the framework of state assignment no. 0191-2019-0046.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. S. Dushchanova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by I. Bel’chenko

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dushchanova, K.S., Khomutova, T.E., Ukrainskiy, P.A. et al. Soil Microbial Biomass and Functional Diversity of Microbial Communities in Native and Arable Soils of the Belogor’e Reserve. Eurasian Soil Sc. 55, 490–500 (2022). https://doi.org/10.1134/S1064229322040081

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229322040081

Keywords:

Navigation