Skip to main content
Log in

A Study of the Zinc Lability and Bioavailability in Soil Using 65Zn in a Vegetation Lysimetric Experiment

  • SOIL CHEMISTRY
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

The transfer of zinc (natural stable Zn and radioactive tracer 65Zn) to aqueous phase and its uptake by barley have been studied using a specially designed vegetation testbench comprising a lysimeter unit filled with coarse-textured soil and drainage and the vegetation vessels with aqueous barley culture. Although the zinc migration to soil aqueous phase and its uptake by plants are spatially separated, they are sequentially coupled. The patterns of Zn(65Zn) distribution among different compounds (chemical fractions) in soil were determined using parallel and sequential fractionation procedures. The relative content of native (stable) Zn in labile and conventionally labile forms is 2.1–6.5-fold lower as compared with the relative content of radionuclide 65Zn and, vice versa, 2.8–3.0-fold higher for conservative (fixed) fractions of the metal in soil. The dynamics of the following parameters were assessed: Zn concentration, 65Zn specific activity, distribution and concentration factors of natural Zn and 65Zn, and uptake and removal of the metal by plants. The enrichment factors of stable Zn, contained in sequentially extracted chemical fractions, with radioisotope 65Zn, were determined, and the pool of the labile zinc compounds in the studied soil was evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Agrochemical Methods of Soil Studies (Nauka, Moscow, 1975) [in Russian].

  2. V. S. Anisimov, L.N. Anisimova, L.M. Frigidova, D. V. Dikarev, R. A. Frigidov, Yu. N. Korneev, A. I. Sanzharov, and S. P. Arysheva, “Evaluation of the migration capacity of Zn in the soil–plant system,” Eurasian Soil Sci. 51, 407–417 (2018).

    Article  Google Scholar 

  3. E. V. Arinushkina, Chemical Analysis of Soils (Moscow State Univ., Moscow, 1970) [in Russian].

    Google Scholar 

  4. B. A. Dospekhov, Method of Field Experiment with Statistical Processing of Study Results (Agropromizdat, Moscow, 1985) [in Russian].

    Google Scholar 

  5. Methodological Recommendations for Determination of Heavy Metals in Agricultural Soils and Products (Central Scientific Research Institute of Agrochemical Service, Moscow, 1992) [in Russian].

  6. P. H. Nye and P. B. Tinker, Solute Movement in the Soil-Root System (Blackwell, Oxford, 1977; Kolos, Moscow, 1980).

  7. V. D. Nefedov, E. N. Tekster, and M. A. Toropova, Radiochemistry (Vysshaya Shkola, Moscow, 1987) [in Russian].

    Google Scholar 

  8. A. I. Obukhov and I. O. Plekhanova, Use of Atomic Absorption Analysis in Soil Biological Studies (Moscow State Univ., Moscow, 1991) [in Russian].

    Google Scholar 

  9. D. L. Pinskii, Ion Exchange in Soils (Pushchino, 1997) [in Russian].

    Google Scholar 

  10. Practicum on Agrochemistry, Ed. by V. G. Mineev (Moscow State Univ., Moscow, 2001) [in Russian].

    Google Scholar 

  11. T. A. Sokolova and S. Ya. Trofimov, Sorption Properties of Soils. Adsorption. Cation Exchange: Manual on Some Issues of Soil Chemistry (Grif i K, Tula, 2009) [in Russian].

    Google Scholar 

  12. Chemistry of Heavy Metals, Arsenic, and Molybdenum in Soils, Ed. by N. G. Zyrin and L. K. Sadovnikova (Moscow State Univ., Moscow, 1985) [in Russian].

    Google Scholar 

  13. D. C. Adriano, Trace Elements in Terrestrial Environments: Biogeochemistry, Bioavailability, and Risks of Metals (Springer-Verlag, New York, 2001).

    Book  Google Scholar 

  14. B. J. Alloway, “Soil factors associated with zinc deficiency in crops and humans,” Environ. Geochem. Health 31, 537–548 (2009). https://doi.org/10.1007/s10653-009-9255-4

    Article  Google Scholar 

  15. S. A. Barber, Soil Nutrient Bioavailability: A Mechanistic Approach (Wiley, Chichester, 1995).

    Google Scholar 

  16. T. Bauer, D. Pinskii, T. Minkina, S. Mandzhieva, M. Burachevskaya, V. Kalinitchenko, and A. Barakhov, “Stabilization dynamics of easily and poorly soluble Zn compounds in the soil,” Geochem.: Explor., Environ., Anal. 19 (2), 184–192 (2019). https://doi.org/10.1144/geochem2017-086

    Article  Google Scholar 

  17. T. Bauer, D. Pinskii, T. Minkina, D. Nevidomskaya, S. Mandzhieva, M. Burachevskaya, V. Chaplygin, and Y. Popileshko, “Time effect on the stabilization of technogenic copper compounds in solid phases of haplic chernozem,” Sci. Total Environ. 626, 1100–1107 (2018). https://doi.org/10.1016/j.scitotenv.2018.01.134

    Article  Google Scholar 

  18. S. Blossfeld, J. Perriguey, T. Sterckeman, et al., “Rhizosphere pH dynamics in trace-metal-contaminated soils, monitored with planar pH optodes,” Plant Soil 330, 173–184 (2010). https://doi.org/10.1007/s11104-009-0190-z

    Article  Google Scholar 

  19. G. Echevarria, J.-L. Morel, J. C. Fardeau, and E. Leclerc, “Assessment of phytoavailability of nickel in soils,” J. Environ. Qual. 27, 1064–1070 (1998). https://doi.org/10.2134/jeq1998.00472425002700050011x

    Article  Google Scholar 

  20. S. Emmanuel and Y. Erel, “Implications from concentrations and isotopic data for Pb partitioning processes in soils,” Geochim. Cosmochim. Acta 66, 2517– 2527 (2002.

    Article  Google Scholar 

  21. A. Fernández Alborés, B. Pérez Cid, E. Fernández Gómeza, and E. Falqué López, “Comparison between sequential extraction procedures and single extractions for metal partitioning in sewage sludge samples,” Analyst 125, 1353–1357 (2000). https://doi.org/10.1039/b001983f

    Article  Google Scholar 

  22. U. Förstner, “Metal speciation-general concepts and applications,” Int. J. Environ. Anal. Chem. 51, 5–23 (1993). https://doi.org/10.1080/03067319308027608

    Article  Google Scholar 

  23. J. France and J. H. M. Thornley, Mathematical Models in Agriculture: A Quantitative Approach to Problems in Agriculture and Related Sciences (London, Butterworths, 1985).

    Google Scholar 

  24. F. Emmanuel and S. Sinaj, “The isotope exchange kinetic technique: A method to describe the availability of inorganic nutrients. Applications to K, P, S and Zn,” Isot. Environ. Health Stud. 34, 61–77 (1998). https://doi.org/10.1080/10256019808036360

    Article  Google Scholar 

  25. J. M. Garforth, E. H. Bailey, A. M. Tye, S. D. Young, and S. Lofts, “Using isotopic dilution to assess chemical extraction of labile Ni, Cu, Zn, Cd and Pb in soils,” Chemosphere 155, 534–541 (2016).

    Article  Google Scholar 

  26. C. W. Gray, R. G. McLaren, D. Günther, and S. Sinaj, “An assessment of cadmium availability in cadmium-contaminated soils using isotope exchange kinetics,” Soil Sci. Soc. Am. J. 68, 1210–1217 (2004).

    Article  Google Scholar 

  27. M. A. Grusak and D. Penna, “Improving the nutrient composition of plants to enhance human nutrition and health,” Annu. Rev. Plant Biol. 50, 133–161 (1999). https://doi.org/10.1146/annurev.arplant.50.1.133

    Article  Google Scholar 

  28. G. Hacisalihoglu and L. Kochian, “How do some plants tolerate low levels of soil zinc? Mechanisms of zinc efficiency in crop plants,” New Phytol. 159, 341–350 (2003). https://doi.org/10.1046/j.1469-8137.2003.00826.x

    Article  Google Scholar 

  29. G. Hacisalihoglu, “Zinc (Zn): the last nutrient in the alphabet and shedding light on Zn efficiency for the future of crop production under suboptimal Zn,” Plants 9, 1471 (2020). https://doi.org/10.3390/plants9111471

    Article  Google Scholar 

  30. Q. He, Y. Ren, I. Mohamed, M. Ali, W. Hassan, and F. Zeng, “Assessment of trace and heavy metal distribution by four sequential extraction procedures in a contaminated soil,” Soil Water. Res. 8, 71–76 (2013).

    Article  Google Scholar 

  31. Z.-Y. Huang, T. Chen, J. Yu, X.-C. Zeng, and Y.‑F. Huang, “Labile Cd and Pb in vegetable-growing soils estimated with isotope dilution and chemical extractants,” Geoderma 160, 400–407 (2011).

    Article  Google Scholar 

  32. G. James, D. Witten, T. Hastie, and R. Tibshirani, An Introduction to Statistical Learning: With Applications in R (Springer-Verlag, New York, 2013). https://doi.org/10.1007/978-1-4614-7138-7

  33. D. L. Jones and P. R. Darrah, “Role of root derived organic acids in the mobilization of nutrients from the rhizosphere,” Plant Soil 166, 247–257 (1994).

    Article  Google Scholar 

  34. A. Kabata-Pendias, Trace Elements in Soils and Plants (CRC Press, London, 2011).

    Google Scholar 

  35. M. Kersten and U. Förstner, “Chemical fractionation of heavy metals in anoxic estuarine and coastal sediments,” Water Sci. Technol. 18, 121–130 (1986).

    Article  Google Scholar 

  36. S. Khadhar, A. Sdiri, A. Chekirben, R. Aouzi, and A. Charef, “Integration of sequential extraction, chemical analysis and statistical tools for the availability risk assessment of heavy metals in sludge amended soils,” Environ. Pollut. 263, 114543 (2020). https://doi.org/10.1016/j.envpol.2020.114543

  37. L. V. Kochian, “Zinc absorption from hydroponic solutions by plant roots,” in Proceedings of the International Symp. on “Zinc in Soils and Plants,” September 27–28, 1993 (Springer-Verlag, Dordrecht, 1993), pp. 45–57.

  38. D. V. Ladonin, “Fractional-isotopic composition of lead compounds in soils of the Kologrivskii forest reserve,” Eurasian Soil Sci. 51, 929–937 (2018). https://doi.org/10.1134/S1064229318080069

    Article  Google Scholar 

  39. D. V. Ladonin, “Heavy metal compounds in soils: Problems and methods of study,” Eurasian Soil Sci. 35, 605-613 (2002).

    Google Scholar 

  40. Y. Liu, T. Gao Xia, Y. Z. Wang, C. Liu, S. Li, Q. Wu, M. Qi, and Y. Lv, “Using Zn isotopes to trace Zn sources and migration pathways in paddy soils around mining area,” Environ. Pollut. 267, 115616 (2020). https://doi.org/10.1016/j.envpol.2020.11561641

  41. H. Marschner, V. Römheld, and M. Kissel, “Different strategies in higher-plants in mobilization and uptake of iron,” J. Plant Nutr. 9, 695–713 (1986).

  42. M. Mench and E. Martin, “Mobilization of cadmium and other metals from two soils by root exudates of Zea mays L., Nicotiana tabacum L. and Nicotiana rustica L.,” Plant Soil 132, 187–196 (1991).

    Article  Google Scholar 

  43. T. Minkina, D. Nevidomskaya, T. Bauer, V. Linnik, V. Shuvaeva, S. Mandzhieva, A. Soldatov, Y. Zubavichus, and A. Trigub, “Quantitative speciation of Zn in Technosols using chemical fractionation and X-ray absorption spectroscopy,” Geochem.: Explor., Environ., Anal. 19 (2), 101–109 (2019). https://doi.org/10.1144/geochem2017-106

    Article  Google Scholar 

  44. T. M. Minkina, D. G. Nevidomskaya, V. A. Shuvaeva, A. V. Soldatov, V. S. Tsitsuashvili, Y. V. Zubavichus, V. D. Rajrut, and M. V. Burachevskaz, “Studying the transformation of Cu2+ ions in soils and mineral phases by the XRD, XANES, and sequential fractionation methods,” J. Geochem. Explor. 184, 365–371 (2016). https://doi.org//10.1016/j.gexplo.2016.10.007

    Article  Google Scholar 

  45. T. M. Minkina, S. S. Mandzhieva, M. V. Burachevskaya, T. V. Bauer, and S. N. Sushkova, “Method of determining loosely bound compounds of heavy metals in the soil,” MethodsX 5, 5217–226 (2018). https://doi.org/10.1016/j.mex.2018.02.007

    Article  Google Scholar 

  46. R. Morabito, “Extraction techniques in speciation analysis of environmental samples Fresenius,” J. Anal. Chem. 351, 378–385 (1995).

    Google Scholar 

  47. W. Nazif, E. R. Marzouk, S. Perveen, N. M. J. Crout, and S. D. Young, “Zinc solubility and fractionation in cultivated calcareous soils irrigated with wastewater,” Sci. Total Environ. 518–519, 310–319 (2015). https://doi.org/10.1016/j.scitotenv.2015.03.016

    Article  Google Scholar 

  48. D. G. Nevidomskaya, T. M. Minkina, A. V. Soldatov et al., “Speciation of Zn and Cu in Technosol and evaluation of a sequential extraction procedure using XAS, XRD and SEM–EDX analyses,” Environ. Geochem. Health 43, 2301–2315 (2021). https://doi.org/10.1007/s10653-020-00693-1

    Article  Google Scholar 

  49. R. Pandey, “Mineral nutrition of plants,” in Plant Biology and Biotechnology, Vol. 1: Plant Diversity, Organization, Function and Improvement, Ed. by B. Bahadur, et al. (Springer-Verlag, Dordrecht, 2015), pp. 499–538.

  50. E. Prichard and V. Barwick, Quality Assurance in Analytical Chemistry (Wiley, Chichester, 2007). https://doi.org/10.1002/9780470517772

  51. Methodologies in Soil and Sediment Fractionation Studies: Single and Sequential Extraction Procedures, Ed. by Ph. Quevauviller (Royal Society of Chemistry, Cambridge, 2002).

    Google Scholar 

  52. G. Sposito, The Chemistry of Soils (Oxford University Press, Oxford, 2008).

    Google Scholar 

  53. M. Suzuki, M. Takahashi, T. Tsukamoto, S. Watanabe, S. Matsuhashi, J. Yazaki, N. Kishimoto, S. Kikuchi, H. Nakanishi, S. Mori, and N. K. Nishizawa, “Biosynthesis and secretion of mugineic acid family phytosiderophores in zinc-deficient barley,” Plant J. 48, 85–97 (2006). https://doi.org/10.1111/j.1365-313X.2006

  54. A. Tessier, P. G. C. Campbell, and M. Bisson, “Sequential extraction procedure for the speciation of particulate trace metals,” Anal. Chem. 51, 844–851 (1979).

    Article  Google Scholar 

  55. N. Tongtavee, J. Shiowatana, J. Ronald, G. McLaren, and W. Colin, “Gray assessment of lead availability in contaminated soil using isotope dilution techniques,” Sci. Total Environ. 348, 244–256 (2005). https://doi.org/10.1016/j.scitotenv.2004.12.066

    Article  Google Scholar 

  56. A. Voegelin, G. Tokpa, O. Jacquat, K. Barmettler, and R. Kretzschmar, “Zinc fractionation in contaminated soils by sequential and single extractions: Influence of soil properties and zinc content,” J. Environ. Qual. 37, 1190–1200 (2008). https://doi.org/10.2134/jeq2007.0326

    Article  Google Scholar 

  57. A. Wali, G. Colinet, and M. Ksibi, “Speciation of heavy metals by modified BCR sequential extraction in soils contaminated by phosphogypsum in Sfax, Tunisia,” Environ. Res., Eng. Manage. 70 (4), 14–26 (2014). https://doi.org/10.5755/j01.erem.70.4.7807

    Article  Google Scholar 

  58. M. Walter, E. Oburger, Y. Schindlegger, S. Hann, M. Puschenreiter, S. M. Kraemer, and W. D. C. Schenkeveld, “Retention of phytosiderophores by the soil solid phase—adsorption and desorption,” Plant Soil 404, 85–97 (2016). https://doi.org/10.1007/s11104-016-2800-x

    Article  Google Scholar 

  59. C. S. C. Wong and W. X. D. Li, “Pb contamination and isotopic composition of urban soils in Hong Kong,” Sci. Total Environ. 319, 185–195 (2004).

    Article  Google Scholar 

  60. S. D. Young, H. Zhang, A. M. Tye, A. Maxted, C. Thums, and I. Thornton, “Characterizing the availability of metals in contaminated soils. I. The solid phase: sequential extraction and isotopic dilution,” Soil Use Manage. 21, 450–458 (2006). https://doi.org/10.1079/SUM2005348

    Article  Google Scholar 

Download references

Funding

The work was supported by the Russian Foundation for Basic Research (project no. 19-29-05039) and Ministry of Science and Higher Education of the Russian Federation (project no. FGNE 2021-0002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Anisimov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by G. Chirikova

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anisimov, V.S., Anisimova, L.N., Sanzharov, A.I. et al. A Study of the Zinc Lability and Bioavailability in Soil Using 65Zn in a Vegetation Lysimetric Experiment. Eurasian Soil Sc. 55, 437–451 (2022). https://doi.org/10.1134/S1064229322040032

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229322040032

Keywords:

Navigation