Skip to main content
Log in

Influence of Bioremediation on the Biological Activity of Leached Chernozem Contaminated with Oil and Lead

  • DEGRADATION, REHABILITATION, AND CONSERVATION OF SOILS
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

The effect of contamination with oil, lead, and their combinations and the influence of bioremediation with the use of microorganisms on the biological activity of leached chernozem (Luvic Chernozem) was comprehensively analyzed in a model experiment. The studied soil was sampled in Ufa district of the Republic of Bashkortostan and artificially contaminated with the listed pollutants. The soil was treated with hydrocarbon-oxidizing bacterial strains resistant to high concentrations of lead ions. All types of pollutants increased the soil phytotoxicity, while applied microorganisms reduced it, which was manifested in a rise in the seed germination index by 1.2‒19.2% as compared to untreated variants. The addition of lead into the oil-contaminated soil reduced the degree of decomposition of hydrocarbons by 4.4–11.2%. Bacterization of contaminated soils enhanced the degradation of hydrocarbons by 6.2–33.8%. The total number of microorganisms increased in soils with oil and with oil and lead. Actinomycetes were most sensitive to the presence of xenobiotics. By the end of the experiment, the enzymatic activity of the oil-contaminated soil decreased. The presence of lead caused a slight rise in the catalase and invertase activities in the first half of the experiment. The combined contamination significantly suppressed the activity of catalase and urease. Bioaugmentation exerted a favorable effect on the restoration of the soil enzymatic activity. The applied bacterial strains contributed to a decrease in phytotoxicity and to an increase in the enzymatic activity of the soil, which makes them promising agents for soil bioremediation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. V. N. Grishko and O. V. Syshchikova, “Streptomyces communities in soils polluted with heavy metals,” Eurasian Soil Sci. 42, 217–224 (2009).

    Article  Google Scholar 

  2. G. M. Zenova, Yu. V. Zakalyukina, V. V. Selyanin, and D. G. Zvyagintsev, “Isolation and growth of acidophilic soil actinomycetes from the Micromonospora genus,” Eurasian Soil Sci. 37, 737‒742 (2004).

    Google Scholar 

  3. I. B. Ivshina, A. V. Krivoruchko, M. S. Kuyukina, L. V. Kostina, T. A. Peshkur, and K. D. Kanningkhem, “Bioremediation of soils disturbed by hydrocarbons and heavy metals using biosurfactants and immobilized Rhodococcus,” Agrar. Vestn. Urala, No. 8, 65‒68 (2012).

    Google Scholar 

  4. R. R. Kabirov, N. A. Kireeva, T. R. Kabirov, I. Ye. Dubovik, A. B. Yakupova, and L. M. Safiullina, “Evaluating the biological activity of oil-polluted soils using a complex index,” Eurasian Soil Sci. 45, 157–161 (2012).

    Article  Google Scholar 

  5. K. Sh. Kazeev, A. V. Trushkov, M. Yu. Odabashyan, and S. I. Kolesnikov, “Postagrogenic changes in the enzyme activity and organic carbon content in chernozem during the first three years of fallow regime,” Eurasian Soil Sci. 53, 995–1003 (2020).

    Article  Google Scholar 

  6. N. A. Kireeva, A. S. Grigoriadi, and E. F. Khaibullina, “Associations of hydrocarbon-oxidizing microorganisms for bioremediation of petroleum-contaminated soils,” Vestn. Bashkir. Gos. Univ., No. 2, 391‒394 (2009).

  7. E. N. Kozlova, A. L. Stepanov, and L. V. Lysak, “The influence of bacterial-humus preparations on the biological activity of soils polluted with oil products and heavy metals,” Eurasian Soil Sci. 48, 400–409 (2015). https://doi.org/10.1134/S1064229315020052

    Article  Google Scholar 

  8. S. I. Kolesnikov, D. K. Aznaurian, K. Sh. Kazeev, and V. F. Val’kov, “Biological properties of south Russian soils: tolerance to oil pollution,” Russ. J. Ecol. 41, 398–404 (2010).

    Article  Google Scholar 

  9. S. I. Kolesnikov, M. G. Zharkova, K. Sh. Kazeev, I. V. Kutuzova, L. S. Samokhvalova, E. V. Naleta, and D. A. Zubkov, “Ecotoxicity assessment of heavy metals and crude oil based on biological characteristics of chernozem,” Russ. J. Ecol. 45, 157–166 (2014). https://doi.org/10.1134/S1067413614030059

    Article  Google Scholar 

  10. S. I. Kolesnikov, K. Sh. Kazeev, M. L. Tatosyan, and V. F. Val’kov, “The effect of pollution with oil and oil products on the biological status of ordinary chernozems,” Eurasian Soil Sci. 39, 552–556 (2006).

    Article  Google Scholar 

  11. T. V. Koronelli, “Principles and methods for raising efficiency of biological degradation of hydrocarbons in the environment: a review,” Appl. Biochem. Microbiol. 32, 519–525 (1996).

    Google Scholar 

  12. T. Yu. Korshunova, S. P. Chetverikov, M. D. Bakaeva, E. V. Kuzina, G. F. Rafikova, D. V. Chetverikova, and O. N. Loginov, “Microorganisms in the elimination of oil pollution consequences (review),” Appl. Biochem. Microbiol. 55, 344–354 (2019).

    Article  Google Scholar 

  13. E. I. Novoselova and O. O. Volkova, “Impact of heavy metals on catalase activity in different soil types,” Izv. Orenb. Gos. Agrar. Univ., No. 2, 190‒193 (2017).

  14. E. I. Novoselova, O. O. Volkova, and R. R. Tur’yanova, “Enzymatic transformation of organic residues in soils contaminated by heavy metals,” Ekol. Urban. Territ., No. 1, 75‒81 (2019). https://doi.org/10.24411/1816-1863-2019-11075

  15. E. I. Novoselova, N. A. Kireeva, and M. I. Garipova, “The role of the enzymatic activity of soils in the trophic function affected by petroleum pollution,” Vestn. Bashkir. Gos. Univ., No. 2, 474‒479 (2014).

  16. E. V. Pleshakova, E. G. Kabantseva, and V. S. Chernovol, “Dehydrogenase activity in petroleum-contaminated soils as a tool for monitoring of bioremediation technologies,” Izv. Sarat. Gos. Univ., Ser. Khim., Biol., Ekol., No. 1, 40‒46 (2010).

  17. E. V. Pleshakova, M. V. Reshetnikov, K. T. Ngun, and E. P. Shuvalova, “Microbiological and biochemical indication of soils in Mednogorsk city,” Agrokhimiya, No. 1, 65–72 (2016).

    Google Scholar 

  18. Yu. M. Polyak and V. I. Sukharevich, “Soil enzymes and soil pollution: biodegradation, bioremediation, and bioindication,” Agrokhimiya, No. 3, 83–93 (2020). https://doi.org/10.31857/S0002188120010123

    Article  Google Scholar 

  19. Practical Manual on Microbiology, Ed. by A. I. Netrusov (Akademiya, Moscow, 2005) [in Russian].

    Google Scholar 

  20. G. F. Rafikova, E. V. Kuzina, E. A. Stolyarova, S. R. Mukhamatd’yarova, and O. N. Loginov, “Complexes of micromycetes of leached chernozem under oil pollution and introduction of oil-destructive microorganisms,” Mikol. Fitopatol., No. 2, 107–115 (2020). https://doi.org/10.31857/S0026364820020099

  21. J. Szegi, Talajmikrobiológiai Vizsgálati Módszerek (Mezőgazdasági Könyvkiadó, Budapest, 1979; Kolos, Moscow, 1983).

  22. Kh. F. Khaziev, Methods of Soil Enzymology (Nauka, Moscow, 2005) [in Russian].

    Google Scholar 

  23. S. P. Chetverikov, M. D. Bakaeva, T. Yu. Korshunova, E. V. Kuzina, G. F. Rafikova, D. V. Chetverikova, L. B. Vysotskaya, and O. N. Loginov, “New strain Enterobacter sp. UOM 3 as oil destructor and producer of indoleacetic acid,” Estestv. Tekh. Nauki, No. 7, 37–40 (2019). https://doi.org/10.25633/ETN.2019.07.13

  24. I. E. Sharapova, E. M. Lapteva, S. P. Maslova, G. I. Tabalenkova, and A. V. Garabadzhiu, “Use of the integral coefficient of biological activity and phytotoxicity index for assessment of phytoremediation of oil-contaminated soils,” Teor. Prikl. Ekol., No. 2, 67‒73 (2015).

  25. A. T. Adetunji, F. B. Lewu, R. Mulidzi, and B. Ncube, “The biological activities of β-glucosidase, phosphatase and urease as soil quality indicators: a review,” J. Soil Sci. Plant Nutr. 17 (3), 794–807 (2017). https://doi.org/10.4067/S0718-95162017000300018

    Article  Google Scholar 

  26. A. C. Agnello, M. Bagardc, E. D. van Hullebuscha, G. Esposito, and D. Huguenota, “Comparative bioremediation of heavy metals and petroleum hydrocarbons co-contaminated soil by natural attenuation, phytoremediation, bioaugmentation and bioaugmentation-assisted phytoremediation,” Sci. Total Environ. 563–564, 693–703 (2016). https://doi.org/10.1016/j.scitotenv.2015.10.061

    Article  Google Scholar 

  27. M. H. Ali, M. T. Sattar, M. I. Khan, M. Naveed, M. Rafique, S. Alamri, and M. H. Siddiqui, “Enhanced growth of mungbean and remediation of petroleum hydrocarbons by Enterobacter sp. MN17 and biochar addition in diesel contaminated soil,” Appl. Sci. 10, 8548 (2020). https://doi.org/10.3390/app10238548

    Article  Google Scholar 

  28. N. Al-Mutairi, A. Bufarsan, and F. Al-Rukaibi, “Ecorisk evaluation and treatability potential of soils contaminated with petroleum hydrocarbon-based fuels,” Chemosphere 74 (1), 142‒148 (2008). https://doi.org/10.1016/j.chemosphere.2008.08.020

    Article  Google Scholar 

  29. H. Aponte, J. Medina, B. Butler, S. Meier, P. Cornejo, and Y. Kuzyakov, “Soil quality indices for metal (loid) contamination: an enzymatic perspective,” Land Degrad. Dev. 31 (17), 2700–2719 (2020). https://doi.org/10.1002/ldr.3630

    Article  Google Scholar 

  30. H. Athar, S. Ambreen, M. Javed, M. Hina, S. Rasul, Z. U. Zafar, H. Manzoor, C. C. Ogbaga, M. Afzal, F. Al-Qurainy, and M. Ashraf, “Influence of sub-lethal crude oil concentration on growth, water relations and photosynthetic capacity of maize (Zea mays L.) plants,” Environ. Sci. Pollut. Res. Int. 23, 18320–18331 (2018). https://doi.org/10.1007/s11356-016-6976-7

    Article  Google Scholar 

  31. M. Bakaeva, E. Kuzina, L. Vysotskaya, G. Kudoyarova, T. Y. Arkhipova, G. Rafikova, S. Chetverikov, T. Korshunova, D. Chetverikova, and O. Loginov, “Capacity of Pseudomonas strains to degrade hydrocarbons, produce auxins and maintain plant growth under normal conditions and in the presence of petroleum contaminants,” Plants 9, 379 (2020). https://doi.org/10.3390/plants9030379

    Article  Google Scholar 

  32. V. P. Beškoski, G. Gojgić-Cvijović, J. Milić, M. Ilić, S. Miletić, T. Šolević, and M. M. Vrvić, “Ex situ bioremediation of a soil contaminated by mazut (heavy residual fuel oil)—a field experiment,” Chemosphere 83 (1), 34–40 (2011). https://doi.org/10.1016/j.chemosphere.2011.01.020

    Article  Google Scholar 

  33. X. Chen and V. Achal, “Biostimulation of carbonate precipitation process in soil for copper immobilization,” J. Hazard. Mater. 368, 705–713 (2019). https://doi.org/10.1016/j.jhazmat.2019.01.108

    Article  Google Scholar 

  34. J. Cheng, Z. Sun, Y. Yu, X. Li, and T. Li, “Effects of modified carbon black nanoparticles on plant-microbe remediation of petroleum and heavy metal co-contaminated soils,” Int. J. Phytoremed. 21 (7), 634–642 (2019). https://doi.org/10.1080/15226514.2018.1556581

    Article  Google Scholar 

  35. S. Chetverikov, L.Vysotskaya, E. Kuzina, T. Arkhipova, M. Bakaeva, G. Rafikova, T. Korshunova, D. Chetverikova, G. Hkudaygulov, and G. Kudoyarova, “Effects of association of barley plants with hydrocarbon-degrading bacteria on the content of soluble organic compounds in clean and oil-contaminated sand,” Plants 10, 975 (2021). https://doi.org/10.3390/plants10050975

    Article  Google Scholar 

  36. I. Declercq, V. Cappuyns, and Y. Duclos, “Monitored natural attenuation (MNA) of contaminated soils: state of the art in Europe—a critical evaluation,” Sci. Total Environ. 426, 393–405 (2012). https://doi.org/10.1016/j.scitotenv.2012.03.040

    Article  Google Scholar 

  37. M. del Carmen Cuevas-Díaz, Á. Martínez-Toledo, O. Guzmán-López, C. P. Torres-López, A. D. C. Ortega-Martínez, and L. J. Hermida-Mendoza, “Catalase and phosphatase activities during hydrocarbon removal from oil-contaminated soil amended with agro-industrial by-products and macronutrients,” Water, Air Soil Pollut. 228 (4), 159 (2017). https://doi.org/10.1007/s11270-017-3336-2

    Article  Google Scholar 

  38. A. Dwivedi, S. Chitranshi, A. Gupta, A. Kumar, and J. L. Bhat, “Assessment of the petroleum oil degradation capacity of indigenous bacterial species isolated from petroleum oil-contaminated soil,” Int. J. Environ. Res. 13, 735‒746 (2019). https://doi.org/10.1007/s41742-019-00210-y

    Article  Google Scholar 

  39. L. El Fels, M. Zamama, A. El Asli, and M. Hafidi, “Assessment of biotransformation of organic matter during co-composting of sewage sludge-lignocelullosic waste by chemical, FTIR analyses, and phytotoxicity tests,” Int. Biodeterior. Biodegrad. 87, 128–137 (2014). https://doi.org/10.1016/j.ibiod.2013.09.024

    Article  Google Scholar 

  40. H. Etesami, “Bacterial mediated alleviation of heavy metal stress and decreased accumulation of metals in plant tissues: mechanisms and future prospects,” Ecotoxicol. Environ. Saf. 147, 175–191 (2018). https://doi.org/10.1016/j.ecoenv.2017.08.032

    Article  Google Scholar 

  41. C. Feng, Y. Ma, X. Jin, Z. Wang, Y. Ma, S. Fu, and H. Y. Chen, “Soil enzyme activities increase following restoration of degraded subtropical forests,” Geoderma 351, 180–187 (2019). https://doi.org/10.1016/j.geoderma.2019.05.006

    Article  Google Scholar 

  42. O. E. Giwa and F. O. Ibitoye, “Bioremediation of heavy metal in crude oil contaminated soil using isolated Indigenous microorganism cultured with E. coli DE3 BL21,” Int. J. Eng. Appl. Sci. 4 (6), 67–70 (2017).

    Google Scholar 

  43. M. T. Gómez-Sagasti, I. Alkorta, J. M. Becerril, L. Epelde, M. Anza, and C. Garbisu, “Microbial monitoring of the recovery of soil quality during heavy metal phytoremediation,” Water, Air Soil Pollut. 23 (6), 3249–3262 (2012). https://doi.org/10.1007/s11270-012-1106-8

    Article  Google Scholar 

  44. W. Hou, J. Wang, Z. Nan, M. J. Christensen, C. Xia, T. Chen, Z. Zhang, and X. Niu, “Epichloe gansuensis endophyte-infection alters soil enzymes activity and soil nutrients at different growth stages of Achnatherum inebrians,” Plant Soil 455 (1), 227–240 (2020). https://doi.org/10.1007/s11104-020-04682-2

    Article  Google Scholar 

  45. J. Hu, X. Lin, J. Wang, J. Dai, R. Chen, J. Zhang, and M. H. Wong, “Microbial functional diversity, metabolic quotient, and invertase activity of a sandy loam soil as affected by long-term application of organic amendment and mineral fertilizer,” J. Soil. Sediments 11 (2), 271–280 (2011). https://doi.org/10.1007/s11368-010-0308-1

    Article  Google Scholar 

  46. A. Iyer, K. Mody, and B. Jha, “Biosorption of heavy metals by a marine bacterium,” Mar. Pollut. Bull. 50 (3), 340–343 (2005). https://doi.org/10.1016/j.marpolbul.2004.11.012

    Article  Google Scholar 

  47. I. Jerin, M. S. Rahi, T. Sultan, M. S. Islam, S. A. Sajib, K. M. F. Hoque, and M. A. Reza, “Diesel degradation efficiency of Enterobacter sp., Acinetobacter sp., and Cedecea sp. isolated from petroleum waste dumping site: a bioremediation view point,” Arch. Microbiol. 203, 5075–5084 (2021). https://doi.org/10.1007/s00203-021-02469-2

    Article  Google Scholar 

  48. S. I. Kolesnikov, M. A. Myasnikova, T. V. Minnikova, T. A. Ter-Misakyants, R. S. Kazeev, and Y. V. Akimenko, “Assessment of meadow soil resistance of the Azov Sea region to pollution with heavy metals and oil,” Ecol. Environ. Conserv. 23 (4), 2346–2351 (2017).

    Google Scholar 

  49. M. V. Korneykova, V. A. Myazin, and N. V. Fokina, “Restoration of oil-contaminated soils in mountain tundra (Murmansk region, Russia),” in Proceedings of the Smart and Sustainable Cities Conf. “Green Technologies and Infrastructure to Enhance Urban Ecosystem Services” (Springer-Verlag, Cham, 2020), pp. 187‒198. https://doi.org/10.1007/978-3-030-16091-3_21

  50. M. Kuyukina, A. Krivoruchko, and I. Ivshina, “Hydrocarbon- and metal-polluted soil bioremediation: progress and challenges,” Microbiol. Austr. 39, 133‒136 (2018). https://doi.org/10.1071/MA18041

    Article  Google Scholar 

  51. M. Li, X. Cheng, and H. Guo, “Heavy metal removal by biomineralization of urease producing bacteria isolated from soil,” Int. Biodeterior. Biodegrad. 76, 81‒85 (2013). https://doi.org/10.1016/j.ibiod.2012.06.016

    Article  Google Scholar 

  52. X. Li, X. Lan, W. Liu, X. Cui, and Z. Cui, “Toxicity, migration and transformation characteristics of lead in soil-plant system: effect of lead species,” J. Hazard. Mater. 395, 122676 (2020). https://doi.org/10.1016/j.jhazmat.2020.122676

    Article  Google Scholar 

  53. Q. Lin, Z. Wang, S. Ma, and Y. Chen, “Evaluation of dissipation mechanisms by Lolium perenne L. and Raphanus sativus for pentachlorophenol (PCP) in copper co-contaminated soil,” Sci. Total Environ. 368 (2‒3), 814–822 (2006). https://doi.org/10.1016/j.scitotenv.2006.03.024

    Article  Google Scholar 

  54. Y. L. Ma, W. Lu, L. L. Wan, and N. Luo, “Elucidation of fluoranthene degradative characteristics in a newly isolated Achromobacter xylosoxidans DN002,” Appl. Biochem. Biotechnol. 175, 1294–1305 (2019). https://doi.org/10.1007/s12010-014-1347-7

    Article  Google Scholar 

  55. J. H. Makoi and P. A. Ndakidemi, “Selected soil enzymes: examples of their potential roles in the ecosystem,” Afr. J. Biotechnol. 7 (3), 181–191 (2008).

    Google Scholar 

  56. V. Masindi and K. L. Muedi, “Environmental contamination by heavy metals,” in Heavy Metals (IntechOpen, London, 2018), pp. 115–132.

    Google Scholar 

  57. M. Megharaj and R. Naidu, “Soil and brownfield bioremediation,” Microb. Biotechnol. 10 (5), 1244–1249 (2017). https://doi.org/10.1111/1751-7915.12840

    Article  Google Scholar 

  58. S. Mishra, J. Jyot, R. C. Kuhad, and B. Lal, “In situ bioremediation potential of an oily sludge-degrading bacterial consortium,” Curr. Microbiol. 43 (5), 328–335 (2001). https://doi.org/10.1007/s002840010311

    Article  Google Scholar 

  59. S. Mustafa, A. Al-Douseri, K. Majki, and E. Al-Saleh, “Potential of crude oil-degrading bacteria to co-resist heavy metals in soil,” WIT Trans. Ecol. Environ. 173, 697‒705 (2013). https://doi.org/10.2495/SDP130581

    Article  Google Scholar 

  60. D. Neina, “The role of soil pH in plant nutrition and soil remediation,” Appl. Environ. Soil Sci. 2019, 5794869 (2019). https://doi.org/10.1155/2019/5794869

    Article  Google Scholar 

  61. M. Nie, Y. Wang, J. Yu, M. Xiao, L. Jiang, J. Yang, C. Fang, J. Chen, and B. Li, “Understanding plant–microbe interactions for phytoremediation of petroleum polluted soil,” PLoS One 6, e17961 (2011). https://doi.org/10.1371/journal.pone.0017961

    Article  Google Scholar 

  62. A. Nosheen, H. Yasmin, R. Naz, A. Bano, R. Keyani, and I. Hussain, “Pseudomonas putida improved soil enzyme activity and growth of kasumbha under low input of mineral fertilizers,” Soil Sci. Plant Nutr. 64 (4), 520–525 (2018. https://doi.org/10.1080/00380768.2018.1461002

    Article  Google Scholar 

  63. A. Oliveira and M. E. Pampulha, “Effects of long-term heavy metal contamination on soil microbial characteristics,” J. Biosci. Bioeng. 102 (3), 157–161 (2006). https://doi.org/10.1263/jbb.102.157

    Article  Google Scholar 

  64. Y. M. Polyak, L. G. Bakina, M. V. Chugunova, N. V. Mayachkina, A. O. Gerasimov, and V. M. Bure, “Effect of remediation strategies on biological activity of oil-contaminated soil—A field study,” Int. Biodeterior. Biodegrad. 126, 57–68 (2018). https://doi.org/10.1016/j.ibiod.2017.10.004

    Article  Google Scholar 

  65. F. Raiesi and S. Salek-Gilani, “The potential activity of soil extracellular enzymes as an indicator for ecological restoration of rangeland soils after agricultural abandonment,” Appl. Soil Ecol. 126, 140–147 (2018). https://doi.org/10.1016/j.apsoil.2018.02.022

    Article  Google Scholar 

  66. B. Ravindran and P. N. S. Mnkeni, “Bio-optimization of the carbon-to-nitrogen ratio for efficient vermicomposting of chicken manure and waste paper using Eisenia fetida,” Environ. Sci. Pollut. Res. 23 (17), 16965–16976 (2016). https://doi.org/10.1007/s11356-016-6873-0

    Article  Google Scholar 

  67. R. L. Raymond, “Microbial oxidation of n-paraffinic hydrocarbons,” Dev. Ind. Microbiol. 2 (1), 23–32 (1961).

    Google Scholar 

  68. R. Sánchez-Cruz, I. Tpia Vázquez, R. A. Batista-García, E. W. Méndez-Santiago, M. D. R. Sánchez-Carbente, A. Leija, V. Lira-Ruan, G. Hernández, A. Wong-Villarreal, and J. L. Folch-Mallol, “Isolation and characterization of endophytes from nodules of Mimosa pudica with biotechnological potential,” Microbiol. Res. 218, 76‒86 (2019). https://doi.org/10.1016/j.micres.2018.09.008

    Article  Google Scholar 

  69. P. Satapute, M. K. Paidi, M. Kurjogi, and S. Jogaiah, “Physiological adaptation and spectral annotation of arsenic and cadmium heavy metal-resistant and susceptible strain Pseudomonas taiwanensis,” Environ. Pollut. 251, 555–563 (2019). https://doi.org/10.1016/j.envpol.2019.05.054

    Article  Google Scholar 

  70. G. Saxena, R. Kishor, and R. N. Bharagava, “Application of microbial enzymes in degradation and detoxification of organic and inorganic pollutants,” in Bioremediation of Industrial Waste for Environmental Safety, Vol. 1: Industrial Waste and Its Management (Springer-Verlag, Singapore, 2020), pp. 41–51.

  71. G. Shen, Y. Lu, and J. Hong, “Combined effect of heavy metals and polycyclic aromatic hydrocarbons on urease activity in soil,” Ecotoxicol. Environ. Saf. 63 (3), 474–480 (2006). https://doi.org/10.1016/j.ecoenv.2005.01.009

    Article  Google Scholar 

  72. G. Shen, Y. Lu, Q. Zhou, and J. Hang, “Interaction of polycyclic aromatic hydrocarbons and heavy metals on soil enzyme,” Chemosphere 61, 1175–1182 (2005). https://doi.org/10.1016/j.chemosphere.2005.02.074

    Article  Google Scholar 

  73. S. Sun, Q. Liu, S. Chen, W. Yu, C. Zhao, and H. Chen, “Optimization for microbial degradation of petroleum hydrocarbon (TPH) by Enterobacter sp. S-1 using response surface methodology,” Petrol. Sci. Technol. 37, 821–828 (2019). https://doi.org/10.1080/10916466.2019.1566256

    Article  Google Scholar 

  74. H. I. Tak, F. Ahmad, and O. O. Babalola, “Advances in the application of plant growth-promoting rhizobacteria in phytoremediation of heavy metals,” Rev. Environ. Contam. Toxicol. 223, 33–52 (2013). https://doi.org/10.1007/978-1-4614-5577-6_2

    Article  Google Scholar 

  75. N. F. Y. Tam and S. Tiquia, “Assessing toxicity of spent pig litter using a seed germination technique,” Resour. Conserv. Recycl. 11 (1–4), 261–274. 1994.

    Article  Google Scholar 

  76. S. J. Varjani, “Microbial degradation of petroleum hydrocarbons,” Bioresour. Technol. 223 (1), 277–286 (2017). https://doi.org/10.1016/j.biortech.2016.10.037

    Article  Google Scholar 

  77. X. Wang, J. Zheng, Z. Han, and H. Chen, “Bioremediation of crude oil-contaminated soil by hydrocarbon-degrading microorganisms immobilized on humic acid-modified biofuel ash,” J. Chem. Technol. Biotechnol. 94 (6), 1904–1912 (2019). https://doi.org/10.1002/jctb.5969

    Article  Google Scholar 

  78. Y. Xian, M. Wang, and W. Chen, “Quantitative assessment on soil enzyme activities of heavy metal contaminated soils with various soil properties,” Chemosphere 139, 604–608 (2015). https://doi.org/10.1016/j.chemosphere.2014.12.060

    Article  Google Scholar 

  79. R. Xiao, S. Wang, R. Li, J. J. Wang, and Z. Zhang, “Soil heavy metal contamination and health risks associated with artisanal gold mining in Tongguan, Shaanxi, China,” Ecotoxicol. Environ. Saf. 141, 17–24 (2017). https://doi.org/10.1016/j.ecoenv.2017.03.002

    Article  Google Scholar 

  80. X. Yang, J. Liu, K. McGrouther, H. Huang, K. Lu, X. Guo, L. He, X. Lin, L. Che, Z. Ye, and H. Wang, “Effect of biochar on the extractability of heavy metals (Cd, Cu, Pb, and Zn) and enzyme activity in soil,” Environ. Sci. Pollut. Res. Int. 23 (2), 974–984 (2016). https://doi.org/10.1007/s11356-015-4233-0

    Article  Google Scholar 

  81. Z. X. Yang, S. Q. Liu, D. W. Zheng, and S. D. Feng, “Effects of cadmium, zinc and lead on soil enzyme activities,” J. Environ. Sci. 18 (6), 1135–1141 (2006). https://doi.org/10.1016/s1001-0742(06)60051-x

    Article  Google Scholar 

  82. J. Zhang, Q. Shi, S. Fan, Y. Zhang, M. Zhang, and J. Zhang, “Distinction between Cr and other heavy-metal-resistant bacteria involved in C/N cycling in contaminated soils of copper producing sites,” J. Hazard. Mater. 402, 123454 (2021). https://doi.org/10.1016/j.jhazmat.2020.123454

    Article  Google Scholar 

  83. C. Zhou, N.Ge, J.Guo, L. Zhu, Z. Ma, S. Cheng, and J. Wang, “Enterobacter asburiae reduces cadmium toxicity in maize plants by repressing iron uptake-associated pathways,” J. Agric. Food Chem. 67, 10126‒10136 (2019). https://doi.org/10.1021/acs.jafc.9b03293

    Article  Google Scholar 

Download references

Funding

This study was performed with the use of the equipment of the Agidel Regional Collective Use Center within the framework of the state assignment of the Ufa Federal Research Center of the Russian Academy of Sciences no. 075-00326-19-00 in theme no. AAAA-A18-118022190100-9 of the Ufa Institute of Biology, Ufa Federal Research Center, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Yu. Korshunova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by I. Bel’chenko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rafikova, G.F., Kuzina, E.V. & Korshunova, T.Y. Influence of Bioremediation on the Biological Activity of Leached Chernozem Contaminated with Oil and Lead. Eurasian Soil Sc. 55, 363–376 (2022). https://doi.org/10.1134/S1064229322030127

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229322030127

Keywords:

Navigation