Skip to main content

Geochemical Characterization and Evolution of Soils from Krakatau Islands


The Krakatau islands complex was formed after the huge eruption of the late Mt. Krakatau in 1883. The complex consists of four islands: Rakata, Panjang, Sertung, and Anak Krakatau. While volcanic activity and plant succession have been extensively studied in the Krakatau area, the soils received less attention. This study characterizes the morphology, chemistry, and geochemistry of the soils from the Krakatau islands. Ten sampling sites were selected from Mt. Anak Krakatau, Rakata, Panjang, and Sebesi islands. The elemental concentration of the samples was measured using the X-ray fluorescence (XRF). In addition, chemical weathering indices were calculated from the geochemical elements. Linear discriminant analysis was used to separate materials from the four islands based on their geochemical concentrations (SiO2, Al2O3, Fe2O3, CaO, MgO, K2O, SO3, P2O5, Ti, and Zr). While the four islands were nearby and influenced by the eruption of Mt. Krakatau, the analysis showed that the geochemical characteristics of volcanic ash for each island are distinct. Mahalanobis distance differentiated soils of Anak Krakatau from the others. Base cations loss in Sebesi was larger than in Rakata, Panjang and Anak Krakatau. Meanwhile, desilication was larger in Rakata compared to Sebesi, Panjang, and Anak Krakatau. The following sequence of weathering degree was determined: Sebesi > Rakata = Panjang > Anak Krakatau. Comparison between sites allowed differentiation of origin of the volcanic materials and a calculation of a relative weathering sequence. This study suggests that the geochemical characteristics of the volcanic materials on these islands are unique and can be used to assess its weathering process and pedogenesis.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.


  1. 1

    B. V. Alloway, S. Andreatuti, R. Setiawan, J. Miksic, and Q. Hua, “Archaeological implications of a widespread 13th Century tephra marker across the central Indonesian Archipelago,” Quat. Sci. Rev. 155, 86–99 (2017).

    Article  Google Scholar 

  2. 2

    Agustan, F. Kimata, Y. E. Pamitro, and H. Z. Abidin, “Understanding the 2007–2008 eruption of Anak Krakatau Volcano by combining remote sensing technique and seismic data,” Int. J. Appl. Earth Obs. Geoinf. 14 (1), 73–82 (2012).

    Article  Google Scholar 

  3. 3

    M. Anda, “Cation imbalance and heavy metal content of seven Indonesian soils as affected by elemental compositions of parent rocks,” Geoderma 189, 388–396 (2012).

    Article  Google Scholar 

  4. 4

    P. Bani, A. Normier, C. Bacri, P. Allard, H. Gunawan, M. Hendrasto, Surono, and V. Tsanev, “First measurement of the volcanic gas output from Anak Krakatau, Indonesia,” J. Volcanol. Geotherm. Res. 302, 237–241 (2015).

    Article  Google Scholar 

  5. 5

    R. W. van Bemmelen, The Geology of Indonesia, Vol. 1: General Geology of Indonesia and Adjacent Archipelagos (Nijhoff, Hague, 1970).

  6. 6

    A. Bey, “Evapoclimatonomy modeling of four restoration stages following Krakatau’s 1883 destruction,” Ecol. Modell. 169 (2–3), 327–337 (2003).

    Article  Google Scholar 

  7. 7

    F. Bétard, “Spatial variations of soil weathering processes in a tropical mountain environment: the Baturité massif and its piedmont (Ceará, NE Brazil),” Catena 93, 18–28 (2012)

    Article  Google Scholar 

  8. 8

    L. Blakemore, P. Searle, and B. Daly, Methods for Chemical Analysis of Soils: New Zealand Soil Bureau Scientific Report Vol. 80 (New Zealand Soil Bureau, Lower Hutt, 1987).

  9. 9

    B. Buggle, B. Glaser, U. Hambach, N. Gerasimenko, and S. Markovic, “An evaluation of geochemical weathering indices in loess–paleosol studies,” Quat. Int. 240 (1–2), 12–21 (2011).

    Article  Google Scholar 

  10. 10

    G. Camus, A. Gourgaud, and P. Vincent, “Petrologic evolution of Krakatau (Indonesia): implications for a future activity,” J. Volcanol. Geotherm. Res. 33 (4), 299–316 (1987).

    Article  Google Scholar 

  11. 11

    S. Carey, H. Sigurdsson, C. Mandeville, and S. Bronto, “Pyroclastic flows and surges over water: an example from the 1883 Krakatau eruption,” Bull. Volcanol. 57 (7), 493–511 (1996). https://doi.otg/10.1007/BF00304435

    Article  Google Scholar 

  12. 12

    S. Carey, H. Sigurdsson, C. Mandeville, and S. Bronto, “Volcanic hazards from pyroclastic flow discharge into the sea: examples from the 1883 eruption of Krakatau, Indonesia,” Geol. Soc. Am. Spec. Pap. 345, 1–14 (2000).

    Article  Google Scholar 

  13. 13

    B. Dahren, V. R. Troll, U. B. Andersson, J. P. Chadwick, M. F. Gardner, K. Jaxybulatov, and I. Koulakov, “Magma plumbing beneath Anak Krakatau volcano, Indonesia: evidence for multiple magma storage regions,” Contrib. Miner. Petrol. 163 (4), 631–651 (2012).

    Article  Google Scholar 

  14. 14

    K. Dammerman, The Fauna of Krakatau 1883–1933 (Noord-Hollandsche Uitgevers Maatschappij, Amsterdam, 1948).

    Google Scholar 

  15. 15

    R. W. Decker and D. Hadikusumo, “Results of the 1960 expedition to Krakatau,” J. Geophys. Res. 66 (10), 3497–3511 (1961).

    Article  Google Scholar 

  16. 16

    C. Deplus, S. Bonvalot, D. Dahrin, M. Diament, H. Harjono, and J. Dubois, “Inner structure of the Krakatau volcanic complex (Indonesia) from gravity and bathymetry data,” J. Volcanol. Geotherm. Res. 64 (1–2), 23–52 (1995).

    Article  Google Scholar 

  17. 17

    M. Dörries, “Global science: the eruption of Krakatau,” Endeavour 27 (3), 113–116 (2003).

    Article  Google Scholar 

  18. 18

    A. Ernst, The New Flora of the Volcanic Island of Krakatau (Cambridge University Press, Cambridge, 1908).

  19. 19

    D. Fiantis, M. Nelson, J. Shamshuddin, T. B. Goh, and E. Van Ranst, “Determination of the geochemical weathering indices and trace elements content of new volcanic ash deposits from Mt. Talang (West Sumatra) Indonesia,” Eurasian Soil Sci. 43, 1477–1485 (2010).

    Article  Google Scholar 

  20. 20

    D. Fiantis, M. Nelson, J. Shamshuddin, T. B. Goh, and E. Van Ranst, “Initial carbon storage in new tephra layers of Mt. Talang in Sumatra as affected by pioneer plants,” Commun. Soil Sci. Plant Anal. 47 (15), 1792–1812 (2016). https://

    Article  Google Scholar 

  21. 21

    D. Fiantis, F. I. Ginting, Gusnidar, M. Nelson, and B. Minasny, “Volcanic ash, Insecurity for the people but securing fertile soil for the future,” Sustainability 11 (11), 3072 (2019).

    Article  Google Scholar 

  22. 22

    D. Fiantis, Gusnidar, B. Malone, R. Pallaser, E. Van Ranst, and B. Minasny, “Geochemical fingerprinting of volcanic soils used for wetland rice in West Sumatra, Indonesia,” Geoderma Reg. 10, 48–63 (2017).

    Article  Google Scholar 

  23. 23

    D. Fiantis, F. I. Ginting, Seprianto, F. Halfero, A. P. Saputra, M. Nelson, E. Van Ranst, and B. Minasny, “Geochemical and mineralogical composition of the 2018 volcanic deposits of Mt. Anak Krakatau,” Geoderma Reg. 25, e00393 (2021)

    Article  Google Scholar 

  24. 24

    F. I. Ginting, Gusnidar, M. Nelson, Rudiyanto, B. Minasny, and D. Fiantis, “Changes in Anak Krakatau landscape after December 2018 eruption,” IOP Conf. Ser.: Earth Environ. Sci. 708, 012088 (2021).

  25. 25

    S. Hardjowigeno, “The development and nature of soils on Rakata,” GeoJournal 28 (2), 131–138 (1992).

    Article  Google Scholar 

  26. 26

    H. Harjono, M. Diament, L. Nouaili, and J. Dubois, “Detection of magma bodies beneath Krakatau volcano (Indonesia) from anomalous shear waves,” J. Volcanol. Geotherm. Res. 39 (4), 335–348 (1989).

    Article  Google Scholar 

  27. 27

    S. R. Hart, M. Coetzee, R. K. Workman, J. Blustajn, K. T. M. Johnson, J. M. Sinton, B. Steinberger, and J. W. Hawkins, “Genesis of the Western Samoa seamount province: age, geochemical fingerprint and tectonics,” Earth Planet. Sci. Lett. 227 (1–2), 37–56 (2004).

    Article  Google Scholar 

  28. 28

    T. Higashi, N. Miyauchi, A. Shinagawa, R. R. Djuwansan, and A. Sule, “Forest vegetation and the nutritional status of soils on the Krakatau Islands, Indonesia,” Soil Sci. Plant Nutr. 33 (1), 103–122 (1987).

    Article  Google Scholar 

  29. 29

    A. Hoffman-Rothe, M. Ibs-von Seht, R. Knieß, E. Faber, et al., “Monitoring Anak Krakatau Volcano in Indonesia,” Eos 87 (51), 581–586 (2006).

    Article  Google Scholar 

  30. 30

    P. Jean-Baptiste, P. Allard, E. Fourre, P. Bani, S. Calabrese, A. Aiuppa, P.J. Gauthier, F. Parello, B. Pelletier, and E. Gerarebiti, “Spatial distribution of helium isotopes in volcanic gases and thermal waters along the Vanuatu (New Hebrides) volcanic arc,” J. Volcanol. Geotherm. Res. 322, 20–29 (2016).

    Article  Google Scholar 

  31. 31

    D. Keys, Catastrophe: An Investigation into the Origins of Modern Civilization (Ballantine Books, New York, 1999). ISBN 978-0345408761

    Google Scholar 

  32. 32

    W. D. Köppen, “Das geographische system der climate,” in Handbuch der Klimatologie (Gebrüder Borntraeger, Berlin, 1936), Vol. 1.

  33. 33

    B. I. Kronberg and H. W. Nesbitt, “Quantification of weathering, soil geochemistry and soil fertility,” J. Soil Sci. 32 (3), 453–459 (1981).

    Article  Google Scholar 

  34. 34

    C. W. Mandeville, S. Carey, and H. Sigurdsson, “Magma mixing, fractional crystallization and volatile degassing during the 1883 eruption of Krakatau volcano, Indonesia,” J. Volcanol. Geotherm. Res. 74 (3–4), 243–274 (1996),

    Article  Google Scholar 

  35. 35

    H. W. Nesbitt, G. Markovics, and R. C. Price, “Chemical processes affecting alkalis and alkaline earths during continental weathering,” Geochim. Cosmochim. Acta 44 (11), 1659–1666 (1980).

    Article  Google Scholar 

  36. 36

    M. Neumann van Padang, Catalogue of the Active Volcanoes of the World: Indonesia (International Volcanological Association, Naples, 1951). https://www.worldcat. org/title/catalogue-of-the-active-volcanoes-of-indonesia/ oclc/27123267.

    Google Scholar 

  37. 37

    D. Ninkovich, “Distribution, age and chemical composition of tephra layers in deep-sea sediments off western Indonesia,” J. Volcanol. Geotherm. Res. 5 (1–2), 67–86 (1979).

    Article  Google Scholar 

  38. 38

    S. Nishimura, J. Nishida, T. Yokoyama, and F. Hehuwat, “Neo-tectonics of the Strait of Sunda, Indonesia,” J. S. Asian Earth Sci. 1 (2), 81–91 (1986).

    Article  Google Scholar 

  39. 39

    S. Nishimura, H. Harjono, and S. Suparka, “The Krakatau Islands: the geotectonic setting,” GeoJournal 28 (2), 87–98 (1992).

    Article  Google Scholar 

  40. 40

    T. Partomihardjo, E. Mirmanto, and R. Whittaker, “Anak Krakatau’s vegetation and flora circa 1991, with observations on a decade of development and change,” GeoJournal 28 (2), 233–248 (1992).

    Article  Google Scholar 

  41. 41

    R. P. Ruxton, “Measures of the degree of chemical weathering of rocks,” J. Geol. 76 (5), 518–527 (1968).

    Article  Google Scholar 

  42. 42

    W. H. Schlesinger, L. A. Bruijnzeel, M. B. Bush, E. M. Klein, K. A. Mace, J. A. Raikes, and R. J. Whittaker, “The biogeochemistry of phosphorus after the first century of soil development on Rakata Island, Krakatau, Indonesia,” Biogeochemistry 40 (1), 37–55 (1998).

    Article  Google Scholar 

  43. 43

    S. Self, “Krakatau revisited: the course of events and interpretation of the 1883 eruption,” GeoJournal 28 (2), 109–121 (1992).

    Article  Google Scholar 

  44. 44

    H. Sigurdsson, S. Carey, C. Mandeville, and S. Bronto, “Pyroclastic flows of the 1883 Krakatau eruption,” Eos 72 (36), 377–381 (1991).

    Article  Google Scholar 

  45. 45

    A. Shinagawa, N. Miyauchi, T. Higashi, M. R. Djuwansah, and A. Sule, “The soils on the Krakatau Islands: II. Particle size distribution and chemical properties of the soils,” Mem. Fac. Agric., Kagoshima Univ. 22, 131–155 (1986).

  46. 46

    A. Shingawa, N. Miyauchi, and T. Higashi, “Cumulic soils on Rakata, Sertung and Panjang (Krakatau Is.) and properties of each Solum,” GeoJournal 28 (2), 139–151 (1992).

    Article  Google Scholar 

  47. 47

    L. P. Singh, B. Parkash, and A. K. Singhvi, “Evolution of the lower Gangetic Plain landforms and soils in West Bengal, India,” Catena 33 (2), 75–104 (1998).

    Article  Google Scholar 

  48. 48

    A. Špičák, J. Kozák, J. Vaněk, and V. Hanuš, “The Krakatau volcano 125 years after the catastrophic eruption (August 27, 1883),” Stud. Geophys. Geod. 52 (3), 449–454 (2008).

    Article  Google Scholar 

  49. 49

    Soil Survey Laboratory Methods Manual: Soil Survey Laboratory Investigations Report No. 42 (Natural Resources Conservation Service, Washington, DC, 1992). ref/?cid=nrcs142p2_054247.

  50. 50

    U. Stockmann, S. R. Cattle, B. Minasny, and A. B. McBratney, “Utilizing portable X-ray fluorescence spectrometry for in-field investigation of pedogenesis,” Catena 139, 220–231 (2016).

    Article  Google Scholar 

  51. 51

    I. S. Sutawidjaja, “The activities of Anak Krakatau volcano during the years of 1992–1996,” Ann. Disaster Prev. Res. Inst., Kyoto Univ. 40, 13–22 (1997). https://

  52. 52

    K. H. Tan, Soil Sampling, Preparation, and Analysis (CRC Press, Boca Raton, FL, 1995). ISBN 9780849334993

    Google Scholar 

  53. 53

    I. W. Thornton, Krakatau: The Destruction and Reassembly of an Island Ecosystem (Harvard University Press, Cambridge, MA, 1997). ISBN 0-674-50568-9

    Google Scholar 

  54. 54

    I. Thornton, Island Colonization: The Origin and Development of Island Communities (Cambridge University Press, Cambridge, 2007). ISBN 9780521671064

    Book  Google Scholar 

  55. 55

    I. W. Thornton, D. Runciman, S. Cook, L. F. Lumsden, T. Partomihardjo, N. K. Schedvid, J. Yukawa, and S. A. Ward, “How important were stepping stones in the colonization of Krakatau?” Biol. J. Linn. Soc. 77 (3), 275–317 (2002).

    Article  Google Scholar 

  56. 56

    C. A. Tryon, S. L. Kuhn, L. Slimak, M. A. V. Logan, and N. Balkan-Atli, “Scale in tephrostratigraphic correlation: an example from Turkish Pleistocene archaeological sites,” Quat. Int. 246 (1–2), 124–133 (2011).

    Article  Google Scholar 

  57. 57

    L. van Reeuwijk, Procedures for Soil Analysis (International Soil Reference Information Centre, Wageningen, 2002). ISBN 90-6672-044-1

    Google Scholar 

  58. 58

    R. Webster, Quantitative Numerical Methods in Soil Classification Survey (Oxford University Press, Oxford, 1977).

    Google Scholar 

  59. 59

    P. L. Whelley, C. G. Newhall, and K. E. Bradley, “The frequency of explosive volcanic eruptions in Southeast Asia,” Bull. Volcanol. 77 (1), 1–11 (2015).

    Article  Google Scholar 

  60. 60

    R. Whittaker, J. Walden, and J. Hill, “Post-1883 ash fall on Panjang and Sertung and its ecological impact,” GeoJournal 28 (2), 153–171 (1992).

    Article  Google Scholar 

  61. 61

    R. Whittaker, M. Bush, and K. Richards, “Plant recolonization and vegetation succession on the Krakatau Islands, Indonesia,” Ecol. Monogr. 59 (2), 59–123 (1989).

    Article  Google Scholar 

  62. 62

    M. Zen, “Growth and state of Anak Krakatau in September 1968,” Bull. Volcanol. 34 (1), 205–215 (1970).

    Article  Google Scholar 

Download references


The support of the Ministry of Research, Technology and Higher Education of the Republic of Indonesia (Grant nos. 25/UN.16/UPT/LPPM/2016 and 08/UN.16.17/ PP.PBK.K/LPPM/2018) is gratefully acknowledged. The support from Sydney Institute of Agriculture - The University of Sydney enabled some analyses to be carried out. BM is a member of the research consortium GLADSOILMAP supported by Le Studium Loire Valley Institute for Advanced Studies.

Author information



Corresponding author

Correspondence to D. Fiantis.

Ethics declarations

The authors declare that they have no conflicts of interest.

Supplementary Information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fiantis, D., Ginting, F.I., Gusnidar et al. Geochemical Characterization and Evolution of Soils from Krakatau Islands. Eurasian Soil Sc. (2021).

Download citation


  • Volcanic soils
  • geochemistry
  • discriminant analysis
  • tephra
  • Indonesia