Skip to main content

Copper Sorption and Transport in an Acidic Brown Soil

Abstract

The sorption and transport of copper (Cu) in an acidic brown soil were studied using batch and column experiments. The results showed that Cu adsorption fitted better Langmuir isotherm at low pH (3.13) whereas Freundlich equation fitted better at high pH (5.87), and affinity (K and KF) increased significantly from 0.00676 to 0.0121 L mg–1, and from 33.05 to 135.98, respectively, with pH increase, resulting in a very great increase in adsorption capacity (Qmax) from 970 to 2272 mg kg–1. Its kinetics was found to be better described by a pseudo-second order model (R2 > 0.997), where sorption rate (k2 and h) was as low as 0.0237 and 0.0013 kg mg–1 d–1, and 23.89 and 106.12 mg kg–1 d–1, respectively, at pH 3.19, much lower (10–20 times) than those at pH 6.92. At pH 5.87, the breakthrough curve of Cu showed substantial retardation and low peak concentration (C/C0 = 0.64); whereas at pH 3.17, full breakthrough (C/C0 = 1) was observed, meaning great increase in mobility of Cu. Generally, two different mechanisms governed Cu sorption and transport: CuOH+ was precipitated on clay mineral surface and weaker complexation with DOM at higher pH (>5); whereas Cu2+ adsorbed to SOM surface and stronger complexation with DOM at lower pH (<4.2).

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. 1

    R. A. Alvarez-Puebla, C. Aisa, J. Blasco, J. C. Echeverría, B. Mosquera, and J. J. Garrido, “Copper heterogeneous nucleation on a palygorskitic clay: an XRD, EXAFS and molecular modeling study,” Appl. Clay Sci. 25 (1–2), 103–110 (2004). https://doi.org/10.1016/j.clay.2003.09.002

    Article  Google Scholar 

  2. 2

    M. Arias-Estévez, J. C. Nóvoa-Muñoz, M. Pateiro, and J. E. López-Periago, “Influence of aging on copper fractionation in an acid soil,” Soil Sci. 172 (3), 225–232 (2007). https://doi.org/10.1097/SS.0b013e31803063ab

    Article  Google Scholar 

  3. 3

    M. Baghdadi, “UT (University of Tehran) isotherm as a novel and useful adsorption isotherm for investigation of adsorptive removal of pollutants,” J. Environ. Chem. Eng. 5 (2), 1906–1919 (2017). https://doi.org/10.1016/j.jece.2017.03.037

    Article  Google Scholar 

  4. 4

    N. Barsova, G. Motuzova, K. Kolchanova, A. Stepanov, M. Karpukhin, and T. Minkina, “The effect of humic substances on Cu migration in the soil profile,” Chem. Ecol. 35 (1), 86–101 (2019). https://doi.org/10.1080/02757540.2018.1540613

    Article  Google Scholar 

  5. 5

    S. Bevara, P. Giri, S. N. Achary, G. Bhallerao, R. K. Mishra, A. Kumar, C. P. Kaushik, and A. K. Tyagi, “Synthetic Na/K-birnessite for efficient management of Sr (II) from nuclear waste,” J. Environ. Chem. Eng. 6 (6), 7200–7213 (2018). https://doi.org/10.1016/j.jece.2018.11.021

    Article  Google Scholar 

  6. 6

    G. H. Bolt, M. F. De Boodt, M. H. B. Hayes, and M. B. McBride, Interactions at the Soil Colloid-Soil Solution Interface (Kluwer, Dordrecht, 1991). https://doi.org/10.1007/978-94-017-1909-4

  7. 7

    S. Boudesocque, E. Guillon, M. Aplincourt, E. Marceau, and L. Stievano, “Sorption of Cu(II) onto vineyard soils: macroscopic and spectroscopic investigations,” J. Colloid Interface Sci. 307 (1), 40–49 (2007). https://doi.org/10.1016/j.jcis.2006.10.080

    Article  Google Scholar 

  8. 8

    H. B. Bradl, “Adsorption of heavy metal ions on soils and soils constituents,” J. Colloid Interface Sci. 277 (1), 1–18 (2004). https://doi.org/10.1016/j.jcis.2004.04.005

    Article  Google Scholar 

  9. 9

    G. Brunetto, P. A. A. Ferreira, G. W. Melo, C. A. Ceretta, and M. Toselli, “Heavy metals in vineyards and orchard soils,” Rev. Bras. Fruticult. 39 (2), e-263 (2017). https://doi.org/10.1590/0100-29452017263

    Article  Google Scholar 

  10. 10

    W. H. Casey and T. W. Swaddle, “Why small? The use of small inorganic clusters to understand mineral surface and dissolution reactions in geochemistry,” Rev. Geophys. 41 (2), 1008 (2003). https://doi.org/10.1029/2002RG000118

    Article  Google Scholar 

  11. 11

    M. Ćendić, R. J. Deeth, A. Meetsma, E. Garribba, D. Sanna, and Z. D. Matović, “Chelating properties of EDTA-type ligands containing six-membered backbone ring toward copper ion: Structure, EPR and TD-DFT evaluation,” Polyhedron 124, 215–228 (2017). https://doi.org/10.1016/j.poly.2016.12.025

    Article  Google Scholar 

  12. 12

    P. K. Chaturvedi, C. S. Seth, and V. Misra, “Sorption kinetics and leachability of heavy metal from the contaminated soil amended with immobilizing agent (humus soil and hydroxyapatite),” Chemosphere 64 (7), 1109–1114 (2006). https://doi.org/10.1016/j.chemosphere.2005.11.077

    Article  Google Scholar 

  13. 13

    D. Curtin, M. E. Peterson, and C. R. Anderson, “pH-dependence of organic matter solubility: base type effects on dissolved organic C, N, P, and S in soils with contrasting mineralogy,” Geoderma 271, 161–172 (2016). https://doi.org/10.1016/j.geoderma.2016.02.009

    Article  Google Scholar 

  14. 14

    H.H. Du, Q. Y. Huang, M. Zhou, B. Q. Tie, M. Lei, X. D. Wei, X. L. Liu, and Y. Yang, “Sorption of Cu (II) by Al hydroxide organo-mineral coprecipitates: microcalorimetry and NanoSIMS observations,” Chem. Geol. 499, 165–171 (2018). https://doi.org/10.1016/j.chemgeo.2018.09.026

    Article  Google Scholar 

  15. 15

    T. A. Elbana and H. M. Selim, “Copper mobility in acidic and alkaline soils: miscible displacement experiments,” Soil Sci. Soc. Am. J. 75 (6), 2101–2110 (2011). https://doi.org/10.2136/sssaj2011.0185

    Article  Google Scholar 

  16. 16

    D. Fangueiro, A. Bermond, E. Santos, H. Carapuça, and A. Duarte, “Kinetic approach to heavy metal mobilization assessment in sediments: choose of kinetic equations and models to achieve maximum information,” Talanta 66 (4), 844–857 (2005). https://doi.org/10.1016/j.talanta.2004.12.036

    Article  Google Scholar 

  17. 17

    D. Fernández-Calviño, J. C. Nóvoa-Muñoz, M.Díaz-Raviña, and M. Arias-Estévez, “Copper accumulation and fractionation in vineyard soils from temperate humid zone (NW Iberian Peninsula),” Geoderma 153 (1–2), 119–129 (2009). https://doi.org/10.1016/j.geoderma.2009.07.024

    Article  Google Scholar 

  18. 18

    K. Flogeac, E. Guillon, and M. Aplincourt, “Surface complexation of copper (II) on soil particles: EPR and XAFS studies,” Environ. Sci. Technol. 38 (11), 3098–3103 (2004). https://doi.org/10.1021/es049973f

    Article  Google Scholar 

  19. 19

    K. Y. Foo and B. H. Hameed, “Insights into the modeling of adsorption isotherm systems,” Chem. Eng. J. 156 (1), 2–10 (2010). https://doi.org/10.1016/j.cej.2009.09.013

    Article  Google Scholar 

  20. 20

    C. C. Fu, C. Tu, H. B. Zhang, Y. Li, L. Z. Li, Q. Zhou, K. G. Scheckel, and Y. M. Luo, “Soil accumulation and chemical fractions of Cu in a large and long-term coastal apple orchard, North China,” J. Soils Sediments 20, 3712–3721 (2020). https://doi.org/10.1007/s11368-020-02676-2

    Article  Google Scholar 

  21. 21

    M. Graouer-Bacart, S. Sayen, and E. Guillon, “Macroscopic and molecular approaches of enrofloxacin retention in soils in presence of Cu (II),” J. Colloid Interface Sci. 408, 191–199 (2013). https://doi.org/10.1016/j.jcis.2013.07.035

    Article  Google Scholar 

  22. 22

    Y. S. Ho and G. McKay, “Pseudo-second order model for sorption processes,” Process. Biochem. 34 (5), 451–465 (1999). https://doi.org/10.1016/S0032-9592(98)00112-5

    Article  Google Scholar 

  23. 23

    Q. H. Hu, Z. J. Xiao, X. M. Xiong, G. M. Zhou, and X. H. Guan, “Predicting heavy metals' adsorption edges and adsorption isotherms on MnO2 with the parameters determined from Langmuir kinetics,” J. Environ. Sci. 27, 207–216 (2015). https://doi.org/10.1016/j.jes.2014.05.036

    Article  Google Scholar 

  24. 24

    IUSS Working Group WRB, World Reference Base for Soil Resources 2014, Update 2015, International Soil Classification System for Naming Soils and Creating Legends for Soil Maps, World Soil Resources Reports No. 106 (UN Food and Agriculture Organization, Rome, 2015). http://www.fao.org/3/i3794en/I3794en.pdf.

  25. 25

    S. H. Ji and M. L. Wu, “Study on simulation of heavy metal transport in soil using PHREEQC,” Appl. Mechan. Mater. 522–524, 153–160 (2014). https://doi.org/10.4028/www.scientific.net/amm.522-524.153

    Article  Google Scholar 

  26. 26

    B. Kandsi, K. Benhabib, G. Mimanne, M. Djellouli, and S. Taleb, “Assessment of the potential mobility of copper in contaminated soil samples by column leaching test,” Eurasian J. Soil Sci., 8 (1), 27–34 (2019). https://doi.org/10.18393/ejss.485939

    Article  Google Scholar 

  27. 27

    T. Karlsson, P. Persson, and U. Skyllberg, “Complexation of copper (II) in organic soils and in dissolved organic matter-EXAFS evidence for chelate ring structures,” Environ. Sci. Technol. 40 (8), 2623–2628 (2006). https://doi.org/10.1021/es052211f

    Article  Google Scholar 

  28. 28

    K. G. Karthikeyan, H. A. Elliott, and J. Chorover, “Role of surface precipitation in copper sorption by the hydrous oxides of iron and aluminum,” J. Colloid Interface Sci. 209 (1), 72–78 (1999). https://doi.org/10.1006/jcis.1998.5893

    Article  Google Scholar 

  29. 29

    M. Komárek, E. Čadková, V. Chrastný, F. Bordas, and J. C. Bollinger, “Contamination of vineyard soils with fungicides: a review of environmental and toxicological aspects,” Environ. Int. 36 (1), 138–151 (2010) https://doi.org/10.1016/j.envint.2009.10.005

    Article  Google Scholar 

  30. 30

    T. N. Kropacheva, A. S. Antonova, and V. I. Kornev, “The influence of aminopolycarboxylates on the sorption of copper(II) cations by (hydro)oxides of iron, aluminum, and manganese,” Eurasian Soil Sci. 49, 765–772 (2016). https://doi.org/10.1134/S1064229316070061

    Article  Google Scholar 

  31. 31

    K. Lock and C. R. Janssen, “Influence of aging on metal availability in soils,” Rev. Environ. Contam. Toxicol. 178, 1–21 (2003). https://doi.org/10.1007/0-387-21728-2_1

    Article  Google Scholar 

  32. 32

    E. D. Lodygin, “Sorption of Cu2+ and Zn2+ ions by humic acids of tundra peat gley soils (histic reductaquic cryosols),” Eurasian Soil Sci. 52, 769–777 (2019). https://doi.org/10.1134/S1064229319070093

    Article  Google Scholar 

  33. 33

    R. K. Lu, Analysis Methods in Soil Agrochemistry (Chinese Agricultural Science and Technology Press, Beijing, 2000). ISBN 7-80119-925-1

    Google Scholar 

  34. 34

    Y. B. Ma, E. Lombi, I. W. Oliver, A. L. Nolan, and M. J. McLaughlin, “Long-term aging of copper added to soils,” Environ. Sci. Technol. 40 (20), 6310–6317 (2006). https://doi.org/10.1021/es060306r

    Article  Google Scholar 

  35. 35

    A. Manceau and A. Matynia, “The nature of Cu bonding to natural organic matter,” Geochim. Cosmochim. Acta 74 (9), 2556–2580 (2010). https://doi.org/10.1016/j.gca.2010.01.027

    Article  Google Scholar 

  36. 36

    J. Mehlhorn, J. Besold, J. S. L. Pacheco, J. P. Gustafsson, R. Kretzschmar, and B. Planer-Friedrich, “Copper mobilization and immobilization along an organic matter and redox gradient-Insights from a Mofette site,” Environ. Sci. Technol. 52 (23), 13698–13707 (2018). https://doi.org/10.1021/acs.est.8b02668

    Article  Google Scholar 

  37. 37

    K. Michel, M. Roose, and B. Ludwig, “Comparison of different approaches for modelling heavy metal transport in acidic soils,” Geoderma 140 (1–2), 207–214 (2007). https://doi.org/10.1016/j.geoderma.2007.04.005

    Article  Google Scholar 

  38. 38

    T. M. Minkina, D. L. Pinskii, T. V. Bauer, D. G. Nevidomskaya, S. S. Mandzhieva, and S. N. Sushkova, “Sorption of Cu by chernozems in southern Russia,” J. Geochem. Expl. 174, 107–112 (2017). https://doi.org/10.1016/j.gexplo.2016.06.002

    Article  Google Scholar 

  39. 39

    N. Mirlean, A, Roisenberg, and J. O. Chies, “Metal contamination of vineyard soils in wet subtropics (southern Brazil),” Environ. Pollut. 149 (1), 10–17 (2007). https://doi.org/10.1016/j.envpol.2006.12.024

    Article  Google Scholar 

  40. 40

    L. A. Oste, E. J. M. Temminghoff, and W. H. van Riemsdijk, “Solid-solution partitioning of organic matter in soils as influenced by an increase in pH or Ca concentration,” Environ. Sci. Technol. 36 (2), 208–214 (2002). https://doi.org/10.1021/es0100571

    Article  Google Scholar 

  41. 41

    D. L. Parkhurst and L. Wissmeier, “PhreeqcRM: A reaction module for transport simulators based on the geochemical model PHREEQC,” Adv. Water Res. 83, 176–189 (2015). https://doi.org/10.1016/j.advwatres.2015.06.001

    Article  Google Scholar 

  42. 42

    D. L. Pinskii, T. M. Minkina, S. S. Mandzhieva, Y. A. Fedorov, T. V. Bauer, and D. G. Nevidomskaya, “Adsorption features of Cu (II), Pb (II), and Zn (II) by an ordinary chernozem from nitrate, chloride, acetate, and sulfate solutions,” Eurasian Soil Sci. 47, 10–17 (2014). https://doi.org/10.1134/S1064229313110069

    Article  Google Scholar 

  43. 43

    W. Plazinski, J. Dziuba, and W. Rudzinski, “Modeling of sorption kinetics: the pseudo-second order equation and the sorbate intraparticle diffusivity,” Adsorption 19, 1055–1064 (2013). https://doi.org/10.1007/s10450-013-9529-0

    Article  Google Scholar 

  44. 44

    Y. B. Qi, J. Zhu, Q. L. Fu, H. Q. Hu, and Q. Y. Huang, “Sorption of Cu by humic acid from the decomposition of rice straw in the absence and presence of clay minerals,” J. Environ. Manage. 200, 304–311 (2017). https://doi.org/10.1016/j.jenvman.2017.05.087

    Article  Google Scholar 

  45. 45

    S. Sayen, J. Mallet, and E. Guillon, “Aging effect on the copper sorption on a vineyard soil: column studies and SEM–EDS analysis,” J. Colloid Interface Sci. 331 (1), 47–54 (2009). https://doi.org/10.1016/j.jcis.2008.11.049

    Article  Google Scholar 

  46. 46

    M. L. Schlegel and A. Manceau, “Binding mechanism of Cu (II) at the clay-water interface by powder and polarized EXAFS spectroscopy,” Geochim. Cosmochim. Acta 113, 113–124 (2013). https://doi.org/10.1016/j.gca.2013.03.019

    Article  Google Scholar 

  47. 47

    S. Sen Gupta and K. G. Bhattacharyya, “Kinetics of adsorption of metal ions on inorganic materials: a review,” Adv. Colloid Interface Sci. 162 (1–2), 39–58 (2011). https://doi.org/10.1016/j.cis.2010.12.004

    Article  Google Scholar 

  48. 48

    D. L. Sparks, Soil Physical Chemistry, 2nd ed. (CRC Press, Boca Raton, 1999). ISBN 9780873718837

    Google Scholar 

  49. 49

    P. Srivastava, B. Singh, and M. Angove, “Competitive adsorption behavior of heavy metals on kaolinite,” J. Colloid Interface Sci. 290, 28–38 (2005). https://doi.org/10.1016/j.jcis.2005.04.036

    Article  Google Scholar 

  50. 50

    Q. Sun, T. T. Li, A. K. Alva, and Y. C. Li, “Mobility and fractionation of copper in sandy soils,” Environ. Pollut. Bioavailability 31 (1), 18–23 (2019). https://doi.org/10.1080/09542299.2018.1558114

    Article  Google Scholar 

  51. 51

    M. A. Tahir, H. N. Bhatti, and M. Iqbal, “Solar Red and Brittle Blue direct dyes adsorption onto Eucalyptus angophoroides bark: equilibrium, kinetics and thermodynamic studies,” J. Environ. Chem. Eng. 4 (2), 2431–2439 (2016). https://doi.org/10.1016/j.jece.2016.04.020

    Article  Google Scholar 

  52. 52

    E. J. M. Temminghoff, S. E. A. T. M. van der Zee, and F. A. M. de Haan, “Copper mobility in a copper-contaminated sandy soil as affected by pH and solid and dissolved organic matter,” Environ. Sci. Technol. 31 (4), 1109–1115 (1997). https://doi.org/10.1021/es9606236

    Article  Google Scholar 

  53. 53

    R. M. Tinnacher, M. Holmboe, C. Tournassat, I. C. Bourg, and J. A. Davis, “Ion adsorption and diffusion in smectite: Molecular, pore, and continuum scale views,” Geochim. Cosmochim. Acta 177, 130–149 (2016). https://doi.org/10.1016/j.gca.2015.12.010

    Article  Google Scholar 

  54. 54

    J. Y. Wang, Q. H. Liu, J. L. Li, S. A. Jin, and Y. B. Yuan, “Analysis on the characteristic and cause of orchard soil acidification in the area of Shandong Peninsula,” Chin. Agric. Sci. Bull. 26 (16), 164–169 (2010). https://doi.org/CNKI:SUN:ZNTB.0.2010-16-037

    Google Scholar 

  55. 55

    Q. Y. Wang, J. S. Liu, Y. Wang, and H. W. Yu, “Accumulations of copper in apple orchard soils: distribution and availability in soil aggregate fractions,” J. Soils Sediments 15 (5), 1075–1082 (2015). https://doi.org/10.1007/s11368-015-1065-y

    Article  Google Scholar 

  56. 56

    P. X. Wu, Q. Zhang, Y. P. Dai, N. W. Zhu, Z. Dang, P. Li, J. H. Wu, and X. D. Wang, “Adsorption of Cu (II), Cd (II) and Cr (III) ions from aqueous solutions on humic acid modified Ca-montmorillonite,” Geoderma 164 (3–4), 215–219 (2011). https://doi.org/10.1016/j.geoderma.2011.06.012

    Article  Google Scholar 

  57. 57

    L. Zhang, Y. X. Pan, W. Lv, and Z. T. Xiong, “Physiological responses of biomass allocation, root architecture, and invertase activity to copper stress in young seedlings from two populations of Kummerowia stipulacea (Maxim.) Makino,” Ecotoxicol. Environ. Saf. 104, 278–284 (2014). https://doi.org/10.1016/j.ecoenv.2014.03.013

    Article  Google Scholar 

  58. 58

    L. Y. L. Zhao, R. Schulin, L. P. Weng, and B. Nowack, “Coupled mobilization of dissolved organic matter and metals (Cu and Zn) in soil columns,” Geochim. Cosmochim. Acta 71 (14), 3407–3418 (2007). https://doi.org/10.1016/j.gca.2007.04.020

    Article  Google Scholar 

  59. 59

    S. W. Zhou, Y. B. Ma, and M. G. Xu, “Ageing of added copper in bentonite without and with humic acid,” Chem. Spec. Bioavailability 21 (3), 175–184 (2009). https://doi.org/10.3184/095422909X12473330533592

    Article  Google Scholar 

  60. 60

    S. W. Zhou, M. G. Xu, Y. B. Ma, S. B. Chen, and D. P. Wei, “Aging mechanism of copper added to bentonite,” Geoderma 147 (1–2), 86–92 (2008). https://doi.org/10.1016/j.geoderma.2008.08.003

    Article  Google Scholar 

  61. 61

    X. Z. Zou, C. L. Zhang, L. Wei, J. F. Ning, and S. H. Yang, “Effect of electrolyte concentration on release of hydrogen ions from soils adsorbing copper ions,” Acta Pedol. Sin. 48 (5), 964–970 (2011). https://doi.org/CNKI:SUN:TRXB.0.2011-05-009

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank the anonymous reviewers and editors for helpful comments and constructive advice on this manuscript.

Funding

This work was financially supported by the National Natural Science Foundation of China (31670471, 41271254) and high-level talent project of Ludong University.

Author information

Affiliations

Authors

Corresponding author

Correspondence to X. L. Bi.

Ethics declarations

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhou, S.W., Song, Z.Z., Meng, L. et al. Copper Sorption and Transport in an Acidic Brown Soil. Eurasian Soil Sc. 54, 1475–1484 (2021). https://doi.org/10.1134/S106422932110015X

Download citation

Keywords:

  • Bordeaux mixture
  • adsorption capacity of soils