Skip to main content

Measurement of Surface Charges and Mechanism of Interfacial Processes for Soil Clay Minerals


Microscopic mechanisms have played a central role during development of different natural sciences and should be the key to construct new foundations for soil science. Abundant surface charge is probably the most important characteristic for soil systems and critical to soil interfacial processes. In this perspective, we discussed (1) more than ten techniques to determine surface charge, (2) different classical theories used to interpret soil interfacial processes and (3) recent progresses on microscopic mechanisms of soil interfacial processes focusing on new theories, ion exchange, clay aggregation, aggregates stability and water infiltration. It manifested that non-classical polarization can account for these microscopic mechanisms, and an updated understanding in this regard was offered. Suggestions were then posed with respect to development of soil science.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.


  1. 1

    M. Amini, H. Ebrahimian, A. Liaghat, and H. Fujimaki, “Unsaturated soil hydraulic properties according to double-ring infiltration of saline water,” Eurasian Soil Sci. 53, 1596–1609 (2020).

    Article  Google Scholar 

  2. 2

    S. J. Anderson and G. Sposito, “Cesium-adsorption method for measuring accessible structural surface charge,” Soil Sci. Soc. Am. J. 55, 1569–1576 (1991).

    Article  Google Scholar 

  3. 3

    C. Appel, L. Q. Ma, R. D. Rhue, and E. Kennelley, “Point of zero charge determination in soils and minerals via traditional methods and detection of electroacoustic mobility,” Geoderma 113, 77–93 (2003).

    Article  Google Scholar 

  4. 4

    Z. S. Artemyeva, N. P. Kirillova, N. N. Danchenko, B. M. Kogut, and E. B. Taller, “The study of physical and chemical characteristics of organo-clay complexes of the chronosequence of albic retisols using dynamic light scattering and phase analysis light scattering,” Eurasian Soil Sci. 53, 446–453 (2020).

    Article  Google Scholar 

  5. 5

    N. S. Bolan, R. Naidu, J. K. Syers, and R. W. Tillman, “Surface charge and solute interactions in soils,” Adv. Agron. 67, 87–140 (1999).

    Article  Google Scholar 

  6. 6

    N. S. Bolan, J. K. Syers, and M. E. Sumner, “Calcium-induced sulfate adsorption by soils,” Soil Sci. Soc. Am. J. 57, 691–696 (1993).

    Article  Google Scholar 

  7. 7

    G. Bolt, “Ion adsorption by clays,” Soil Sci. 79, 267–276 (1955).

    Article  Google Scholar 

  8. 8

    M. Boström, D. R. Williams, and B. W. Ninham, “Specific ion effects: why DLVO theory fails for biology and colloid systems,” Phys. Rev. Lett. 87, 168103 (2001).

    Article  Google Scholar 

  9. 9

    S. A. Carroll-Webb and J. V. Walther, “A surface complex reaction model for the pH-dependence of corundum and kaolinite dissolution rates,” Geochim. Cosmochim. Acta 52, 2609–2623 (1988).

    Article  Google Scholar 

  10. 10

    W. Q. Ding, X. M. Liu, F. N. Hu, H. L. Zhu, Y. X. Luo, S. Li, and H. Li, “How the particle interaction forces determine soil water infiltration: specific ion effects,” J. Hydrol. 568, 492–500 (2019).

    Article  Google Scholar 

  11. 11

    M. Drab and V. K. Iglič, “Diffuse electric double layer in planar nanostructures due to Fermi–Dirac statistics,” Electrochim. Acta 204, 154–159 (2016).

    Article  Google Scholar 

  12. 12

    W. Du, R. Li, X. M. Liu, R. Tian, W. Q. Ding, and H. Li, “Estimating Hofmeister energy in ion-clay mineral interactions from the Gouy–Chapman theory,” Appl. Clay Sci. 146, 122–130 (2017).

    Article  Google Scholar 

  13. 13

    W. Du, R. Li, X. M. Liu, R. Tian, and H. Li, “Specific ion effects on ion exchange kinetics in charged clay,” Colloid Surf., A 509, 427–432 (2016).

  14. 14

    W. Du, X. M. Liu, R. Li, R. Tian, and H. Li, “Theory to describe incomplete ion exchange in charged heterogeneous systems,” J. Soil Sediments 19, 1839–1849 (2019).

    Article  Google Scholar 

  15. 15

    M. Duquette and W. Hendershot, “Soil surface charge evaluation by back-titration: I. Theory and method development,” Soil Sci. Soc. Am. J. 57, 1222–1228 (1993).

    Article  Google Scholar 

  16. 16

    E. Eriksson, “Cation exchange equilibria on clay minerals,” Soil Sci. 74, 103–113 (1952).

    Article  Google Scholar 

  17. 17

    Soil and Water Chemistry: An Integrative Approach, Ed. by M. E. Essington (CRC Press, Boca Raton, FL, 2003).

  18. 18

    G. L. Gaines and H. C. Thomas, “Adsorption studies on clay minerals. II. A formulation of the thermodynamics of exchange adsorption,” J. Chem. Phys. 21, 714–718 (1955).

    Article  Google Scholar 

  19. 19

    X. D. Gao, S. Li, X. M. Liu, F. N. Hu, and R. Tian, “The effects of \({\text{NO}}_{3}^{ - }\) and Cl on negatively charged clay aggregation,” Soil Tillage Res. 186, 242–248 (2019).

    Article  Google Scholar 

  20. 20

    X. D. Gao, H. Li, R. Tian, X. M. Liu, and H. L. Zhu, “Quantitative characterization of specific ion effects using an effective charge number based on the Gouy-Chapman model,” Acta Phys. Chim. Sin. 30, 2272–2282 (2014).

    Article  Google Scholar 

  21. 21

    X. D. Gao, R. Tian, X. M. Liu, H. L. Zhu, Y. Tang, C. Y. Xu, G. M. Shah, and H. Li, “Specific ion effects of Cu2+, Ca2+ and Mg2+ on montmorillonite aggregation,” Appl. Clay Sci. 179, 105154 (2019).

    Article  Google Scholar 

  22. 22

    Y. Ge and W. Hendershot, “Evaluation of soil surface charge using the back-titration technique,” Soil Sci. Soc. Am. J. 68, 82–88 (2004).

    Article  Google Scholar 

  23. 23

    Y. Gong, R. Tian, and H. Li, “Coupling effects of surface charges, adsorbed counterions and particle-size distribution on soil water infiltration and transport,” Eur. J. Soil Sci. 69, 1008–1017 (2018).

    Article  Google Scholar 

  24. 24

    D. C. Grahame, “The electrical double layer and the theory of electrocapillarity,” Chem. Rev. 41, 441–501 (1947).

    Article  Google Scholar 

  25. 25

    J. A. Greathouse and R. T. Cygan, “Molecular simulations of clay minerals,” in Development in Clay Science, Ed. by F. Bergaya and G. Lagaly (Elsevier, Amsterdam, 2013), Vol. 5, Ch. 3, pp. 405–423.

  26. 26

    H. P. Gregor, “Gibbs–Donnan equilibria in ion-exchange resin systems,” J. Am. Chem. Soc. 73, 642–650 (1951).

    Article  Google Scholar 

  27. 27

    W. D. Hao, S. L. Flynn, D. S. Alessi, and K. O. Konhauser, “Change of the point of zero net proton charge (pHPZNPC) of clay minerals with ionic strength,” Chem. Geol. 493, 458–467 (2017).

  28. 28

    F. N. Hu, H. Li, X. M. Liu, S. Li, W. Q. Ding, C. Y. Xu, Y. Li, and H. L. Zhu, “Quantitative characterization of non-classic polarization of cations on clay aggregate stability,” PLoS One 10, 0122460 (2015).

    Article  Google Scholar 

  29. 29

    F. N. Hu, J. F. Liu, C. Y. Xu, W. Du, Z. H. Yang, X. M. Liu, G. Liu, and S. W. Zhao, “Soil internal forces contribute more than raindrop impact force to rainfall splash erosion,” Geoderma 330, 91–98 (2019).

    Article  Google Scholar 

  30. 30

    F. N. Hu, S. Li, C. Y. Xu, S. Miao, W. Q. Ding, X. M. Liu, and H. Li, “Effect of soil particle interaction forces in a clay-rich soil on aggregate breakdown and particle aggregation,” Eur. J. Soil Sci. 70, 268–277 (2019).

    Article  Google Scholar 

  31. 31

    F. N. Hu, C. Y. Xu, H. Li, S. Li, Z. H. Yu, Y. Li, and X. H. He, “Particles interaction forces and their effects on soil aggregates breakdown,” Soil Tillage Res. 147, 1–9 (2015).

    Article  Google Scholar 

  32. 32

    X. R. Huang, H. Li, S. Li, H. L. Xiong, and X. J. Jiang, “Role of cationic polarization in humus-increased soil aggregate stability,” Eur. J. Soil Sci. 67, 341–350 (2016).

    Article  Google Scholar 

  33. 33

    X. X. Huang and G. Yang, “Charge reversal and anion effects during adsorption of metal ions at clay surfaces: mechanistic aspects and influence factors,” Chem. Phys. 529, 110575 (2020).

    Article  Google Scholar 

  34. 34

    D. G. Kinniburgh, J. K. Svers, and M. L. Jackson, “Specific adsorption of trace amounts of Ca and Sr by hydrous oxides of iron and aluminum,” Soil Sci. Soc. Am. J. 39, 464–470 (1975).

    Article  Google Scholar 

  35. 35

    N. Kumar, M. P. Andersson, D. van den Ende, F. Mugele, and I. Siretanu, “Probing the surface charge on the basal planes of kaolinite particles with high-resolution atomic force microscopy,” Langmuir 33, 14226–14237 (2017).

    Article  Google Scholar 

  36. 36

    H. Li, J. Hou, X. M. Liu, R. Li, H. L. Zhu, and L. S. Wu, “Combined determination of specific surface area and surface charge properties of charged particles from a single experiment,” Soil Sci. Soc. Am. J. 75, 2128–2135 (2011).

  37. 37

    R. Li, H. Li, X. M. Liu, R. Tian, H. L. Zhu, and H. L. Xiong, “Combined measurement of surface properties of particles and equilibrium parameters of cation exchange from a single kinetic experiment,” RSC Adv. 4, 24671–24678 (2014).

    Article  Google Scholar 

  38. 38

    M. Y. Jia, H., Li, H.L. Zhu, R. Tian, and X. D. Gao, “An approach for the critical coagulation concentration estimation of polydisperse colloidal suspensions of soil and humus,” J. Soil Sediments 13, 325–335 (2013).

    Article  Google Scholar 

  39. 39

    G. N. Kurochkina, “The effect of humic acid adsorption on the coagulation stability of soil suspensions,” Eurasian Soil Sci. 53, 62–72 (2020).

    Article  Google Scholar 

  40. 40

    J. V. Lagerwerff and G. H. Bolt, “Theoretical and experimental analysis of Gapon’s equation for ion exchange,” Soil Sci. 87, 127–222 (1959).

    Article  Google Scholar 

  41. 41

    T. Lagström, T. A. Gmür, L. Quaroni, A. Goel, and M. A. Brown, “Surface vibrational structure of colloidal silica and its direct correlation with surface charge density,” Langmuir 31, 3621–3626 (2015).

    Article  Google Scholar 

  42. 42

    D. R. Lewis, “Ion exchange reactions of clays,” Clays Clay Miner. 1, 54–69 (1952).

    Article  Google Scholar 

  43. 43

    S. Li, H. Li, F. N. Hu, X. R. Huang, D. T. Xie, and J. P. Ni, “Effects of strong ionic polarization in the soil electric field on soil particle transport during rainfall,” Eur. J. Soil Sci. 66, 921–929 (2015).

    Article  Google Scholar 

  44. 44

    S. Li, H. Li, C. Y. Xu, X. R. Huang, D. T. Xie, and J. P. Ni, “Particle interaction forces induce soil particle transport during rainfall”, Soil Sci. Soc. Am. J. 77, 1563–1571 (2013).

    Article  Google Scholar 

  45. 45

    X. Li, H. Li, and G. Yang, “Electric fields within clay materials: How to affect the adsorption of metal ions,” J. Colloid Interface Sci. 501, 54–59 (2017).

    Article  Google Scholar 

  46. 46

    Q. Y. Li, X. Li, S. Yang, P. K. Gu, and G. Yang, “Structure, dynamics, and stability of water molecules during interfacial interaction with clay minerals: strong dependence on surface charges,” ACS Omega 4, 5932–5936 (2019).

    Article  Google Scholar 

  47. 47

    H. Li, R. Li, H. L. Zhu, and L. S. Wu, “Influence of electrostatic field from soil particle surfaces on ion adsorption-diffusion,” Soil Sci. Soc. Am. J. 74, 1129–1138 (2010).

    Article  Google Scholar 

  48. 48

    R. Li, H. Li, H. L. Zhu, and L. S. Wu, “Kinetics of cation adsorption on charged soil mineral as strong electrostatic force presence or absence,” J. Soil Sediments 11, 53–61 (2011).

    Article  Google Scholar 

  49. 49

    H. Li and G. Yang, “Rethink the methodologies in basic soil science research: from the perspective of soil chemistry,” Acta Pedol. Sin. 54, 819–826 (2017).

    Article  Google Scholar 

  50. 50

    Q. Y. Li, S. Yang, Y. Tang, G. Yang, and H. Li, “Asymmetric hybridization orbitals at the charged interface initiates new surface reactions: a quantum mechanics exploration,” J. Phys. Chem. C 123, 25278–25285 (2019).

    Article  Google Scholar 

  51. 51

    H. Li and L. S. Wu, “A new approach to estimate ion distribution between the exchanger and solution phases,” Soil Sci. Soc. Am. J. 71, 1694–1698 (2007).

    Article  Google Scholar 

  52. 52

    D. Liu, W. Du, X. M. Liu, R. Tian, and H. Li, “To distinguish electrostatic, coordination bond, nonclassicalpolarization, and dispersion forces on cation–clay interactions,” J. Phys. Chem. C 123, 2157–2164 (2019).

    Article  Google Scholar 

  53. 53

    J. Liu, R. Gaikwad, A. Hande, D. Siddhartha, and T. Thundat, “Mapping and quantifying surface charges on clay nanoparticles,” Langmuir 31, 10469–10476 (2015).

    Article  Google Scholar 

  54. 54

    X. M. Liu, H. Li, W. Du, R. Tian, and R. Li, “Hofmeister effects on cation exchange equilibrium: quantification of ion exchange selectivity,” J. Phys. Chem. C 117, 6245–6251 (2013).

    Article  Google Scholar 

  55. 55

    X. M. Liu, H. Li, R. Li, R. Tian, and J. Hou, “A new model for cation exchange equilibrium considering the electrostatic field of charged particles,” J. Soil Sediments 12, 1019–1029 (2012).

    Article  Google Scholar 

  56. 56

    X. M. Liu, H. Li, R. Li, R. Tian, and C. Y. Xu, “Combined determination of surface properties of nano-colloidal particles through ion selective electrodes with potentiometer,” Analyst 138, 1122–1129 (2013).

    Article  Google Scholar 

  57. 57

    X. M. Liu, H. Li, R. Li, D. T. Xie, J. P. Ni, and L. S. Wu, “Strong non-classical induction forces in ion-surface interactions: general origin of Hofmeister effects,” Sci. Rep. 4, 5047 (2014).

    Article  Google Scholar 

  58. 58

    X. M. Liu, Y. Tang, H. Li, and L. S. Wu, “Effects of interactions between soil particles and electrolytes on saturated hydraulic conductivity,” Eur. J. Soil Sci. 71, 190–203 (2020).

    Article  Google Scholar 

  59. 59

    X. M. Liu, G. Yang, H. Li, R. Tian, R. Li, X. J. Jiang, J. P. Ni, and D. T. Xie, “Observation of significant steric, valence and polarization effects and their interplay: a modified theory for electric double layers,” RSC Adv. 4, 1189–1192 (2014).

    Article  Google Scholar 

  60. 60

    E. D. Lodygin, “Sorption of Cu2+ and Zn2+ ions by humic acids of tundra peat gley soils (histic reductaquic cryosols),” Eurasian Soil Sci. 52, 769–777 (2019).

    Article  Google Scholar 

  61. 61

    Y. X. Luo, H. Li, W. Q. Ding, F. N. Hu, and S. Li, “Effects of DLVO, hydration and osmotic forces among soil particles on water infiltration,” Eur. J. Soil Sci. 69, 710–718 (2018).

    Article  Google Scholar 

  62. 62

    Y. X. Luo, H. Li, X. D. Gao, and R. Tian, “Description of colloidal particles aggregation in the presence of Hofmeister effects: on the relationship between ion adsorption energy and particle aggregation activation energy,” Phys. Chem. Chem. Phys. 20, 22831–22840 (2018).

    Article  Google Scholar 

  63. 63

    V. Mazzini and V. S. J. Craig, “What is the fundamental ion-specific series for anions and cations? Ion specificity in standard partial molar volumes of electrolytes and electrostriction in water and non-aqueous solvents,” Chem. Sci. 8, 7052–7065 (2017).

    Article  Google Scholar 

  64. 64

    A. Mehlich, “Mehlich 3 soil test extractant: a modification of Mehlich 2 extractant,” Commun. Soil Sci. Plant Anal. 15, 1409–1416 (1984).

    Article  Google Scholar 

  65. 65

    R. Naidu, J. K. Syers, R. W. Tillman, and J. H. Kirkman, “Effect of liming and added phosphate on charge characteristics of acid soils,” J. Soil Sci. 41, 157–164 (1990).

    Article  Google Scholar 

  66. 66

    J. S. Noh and J. A. Schwarz, “Estimation of the point of zero charge of simple oxides by mass titration,” J. Colloid Interface Sci. 130, 157–164 (1989).

    Article  Google Scholar 

  67. 67

    R. A. Ogwada and D. L. Sparks, “A critical evaluation on the use of kinetics for determining thermodynamics of ion exchange in soils,” Soil Sci. Soc. Am. J. 50, 300–305 (1986).

    Article  Google Scholar 

  68. 68

    R. A. Ogwada and D. L. Sparks, “Kinetics of ion exchange on clay minerals and soil: I. Evaluation of methods,” Soil Sci. Soc. Am. J. 50, 1158–1162 (1986).

    Article  Google Scholar 

  69. 69

    E. M. Pecini and M. J. Avena, “Measuring the isoelectric point of the edges of clay mineral particles: the case of montmorillonite,” Langmuir 29, 14926–14934 (2013).

    Article  Google Scholar 

  70. 70

    P. Reichert, K. S. Kjær, B. T. van Driel, J. Mars, J. W. Ochsmann, D. Pontoni, M. Deutsch, M. M. Nielsen, and M. Mezger, “Molecular scale structure and dynamics at an ionic liquid/electrode interface,” Faraday Discuss. 206, 141–157 (2018).

    Article  Google Scholar 

  71. 71

    K. Sakurai, Y. Ohdate, and K. Kyuma, “Comparison of salt titration and potentiometric titration methods for the determination of Zero Point of Charge (ZPC),” Soil Sci. Plant Nutr. 34, 171–182 (1988).

    Article  Google Scholar 

  72. 72

    R. K. Schofield, “Effect of pH on electric charges carried by clay particles,” J. Soil Sci. 1, 1–8 (1949).

    Article  Google Scholar 

  73. 73

    B. K. Schroth and G. Sposito, “Surface charge properties of kaolinite,” Clays Clay Miner. 45, 85–91 (1997).

    Article  Google Scholar 

  74. 74

    C. P. Schulthess and D. L. Sparks, “Back titration technique for proton isotherm modeling of oxide surfaces,” Soil Sci. Soc. Am. J. 50, 1406–1411 (1986).

    Article  Google Scholar 

  75. 75

    T. A. Sokolova, “Low-molecular-weight organic acids in soils: sources, composition, concentrations, and functions: a review,” Eurasian Soil Sci. 53, 580–594 (2020).

    Article  Google Scholar 

  76. 76

    D. L. Sparks, L. W. Zelazny, and D. C. Martens, “Kinetics of potassium exchange in a Paleudult from the coastal plain of Virginia,” Soil Sci. Soc. Am. J. 44, 37–40 (1980).

    Article  Google Scholar 

  77. 77

    G. Sposito, “The Gapon and the Vanselow selectivity coefficients,” Soil Sci. Soc. Am. J. 41, 1205–1206 (1977).

    Article  Google Scholar 

  78. 78

    Opportunities in Basic Soil Science Research, Ed. by G. Sposito, R. J. Reginato, and R. J. Luxmoore (Soil Science Society of America, Madison, WI, 1992).

  79. 79

    P. Taboada-Serrano, V. Vithayaveroj, S. Yiacoumi, and C. Tsouris, “Surface charge heterogeneities measured by atomic force microscopy,” Environ. Sci. Technol. 39, 6352–6360 (2005).

    Article  Google Scholar 

  80. 80

    Principles of Soil Schemistry, Ed. by K. M. Tan, 4th ed. (CRC Press, Boca Raton, FL, 2011).

  81. 81

    L. Y. Tan and D. L. Sparks, “Cation-exchange kinetics on montmorillonite using pressure-jump relaxation,” Soil Sci. Soc. Am. J. 57, 42–46 (1993).

    Article  Google Scholar 

  82. 82

    G. W. Thomas, “Historical developments in soil chemistry: ion exchange,” Soil Sci. Soc. Am. J. 41, 230–238 (1977).

    Article  Google Scholar 

  83. 83

    R. Tian, H. Li, X. M. Liu, and X. D. Gao, “Ca2+ and Cu2+ induced aggregation of variably charged soil particles: a comparative study,” Soil Sci. Soc. Am. J. 77, 774–781 (2013).

    Article  Google Scholar 

  84. 84

    R. Tian, G. Yang, H. Li, X. D. Gao, X. M. Liu, H. L. Zhu, and Y. Tang, “Activation energies of colloidal particle aggregation: towards a quantitative characterization of specific ion effects,” Phys. Chem. Chem. Phys. 16, 8828–8836 (2014).

    Article  Google Scholar 

  85. 85

    R. Tian, G. Yang, Y. Tang, X. M. Liu, R. Li, H. L. Zhu, and H. Li, “Origin of Hofmeister effects for complex systems,” PLoS One 10, 0128602 (2015).

    Article  Google Scholar 

  86. 86

    R. Tian, G. Yang, C. Zhu, X. M. Liu, and H. Li, “Specific anion effects for aggregation of colloidal minerals: a joint experimental and theoretical study,” J. Phys. Chem. C 119, 4856–4864 (2015).

    Article  Google Scholar 

  87. 87

    C. Tournassat, H. Gailhanou, C. Crouzet, and G. Braibant, “Cation exchange selectivity coefficient values on smectite and mixed-layer illite/smectite minerals,” Soil Sci. Soc. Am. J. 73, 928–942 (2009).

    Article  Google Scholar 

  88. 88

    A. P. Vanselow, “Equilibria of the base-exchange reactions of bentonites, permutites, soil colloids, and zeolites,” Soil Sci. 33, 95–114 (1932).

    Article  Google Scholar 

  89. 89

    Principles of Agronomy for Sustainable Agriculture, Ed. by F. J. Villalobos and E. Fereres (Springer-Verlag, Berlin, 2016).

  90. 90

    C. Y. Xu, H. Li, F. N. Hu, S. Li, X. M. Liu, and Y. Li, “Non-classical polarization of cations increases the stability of clay aggregates: specific ion effects on the stability of aggregates,” Eur. J. Soil Sci. 66, 615–623 (2015).

    Article  Google Scholar 

  91. 91

    . Yang, X. Li, Z. Q. Jia, Q. Y. Li, and G. Yang, “Molecular dynamics simulations for the co-adsorption of binary electrolytes at the interface of montmorillonite and aqueous solutions,” Soil Sci. Soc. Am. J. 82, 1384–1391 (2018). 10.2136/sssaj2018.04.014

    Article  Google Scholar 

  92. 92

    S. Yang, X. Li, Q.Y. Li, P. K. Gu, X. T. Liu, and G. Yang, “Competitive adsorption of metal ions at smectites/water interfaces: mechanistic aspects, and impacts of co-ions, charge densities and charge locations,” J. Phys. Chem. C 124, 1500–1510 (2020).

    Article  Google Scholar 

  93. 93

    Z. H. Yu, H. Li, X. M. Liu, C. Y. Xu, and H. L. Xiong, “Influence of soil electric field on water movement in soil,” Soil Tillage Res. 155, 263–270 (2016).

    Article  Google Scholar 

  94. 94

    Z. H. Yu, X. M. Liu, C. Y. Xu, H. L. Xiong, and H. Li, “Specific ion effects on soil water movement,” Soil Tillage Res. 161, 63–70 (2016).

    Article  Google Scholar 

  95. 95

    Z. H. Yu, J. B. Zhang, C. Z. Zhang, X. L. Xin, and H. Li, “The coupling effects of soil organic matter and particle interaction forces on soil aggregate stability,” Soil Tillage Res. 174, 251–260 (2017).

    Article  Google Scholar 

  96. 96

    J. N. Yun, Q. Wang, C. Zhu, and G. Yang, “Application of density functional theory in soil science”, in Density Functional Calculations: Recent Progresses of Theory and Application, Ed. by G. Yang (IntechOpen, Rijeka, 2018), pp. 245–262.

  97. 97

    Y. K. Zhang, R. Tian, J. Tang, and H. Li, “Specific ion effect of H+ on variably charged soil colloid aggregation,” Pedosphere 30, 844–852 (2020).

    Article  Google Scholar 

  98. 98

    L. H. Zhu, R. Tian, X. M. Liu, H. L. Xiong, and H. Li, “A general theory for describing coagulation kinetics of variably charged nanoparticles,” Colloids Surf., A 527, 158–163 (2017).

    Article  Google Scholar 

  99. 99

    R. H. Zhang, R. Tian, L. H. Zhu, Z. X. Yu, D. Liu, B. Feng, and H. Li, “Water infiltration under different CaCl2 concentrations for soil with mainly permanent charges,” Soil Tillage Res. 195, 104416 (2019).

    Article  Google Scholar 

  100. 100

    From Colloids to Nanotechnology, Ed. by M. Zrinyi and Z. Hórvölgyi (Springer-Verlag, Berlin, 2004).

Download references


This work was sponsored by the Innovative Research Groups of CQ, China (CXQT10006), National Natural Science Foundation of China (41530855) and Natural Science Foundation Project of CQ CSTC, China (cstc2017jcyjAX0145).

Author information



Corresponding authors

Correspondence to Gang Yang or Hang Li.

Ethics declarations

The authors declare that they have no conflict of interest.

Supplementary Information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gang Yang, Li, Q. & Li, H. Measurement of Surface Charges and Mechanism of Interfacial Processes for Soil Clay Minerals. Eurasian Soil Sc. 54, 1546–1563 (2021).

Download citation


  • surface charge
  • soil interface
  • non-classical polarization
  • microscopic mechanism
  • macroscopic performance