Skip to main content

Soil C : N : P Stoichiometry as Related to Nitrogen Addition in a Meadow Steppe of Northern China

Abstract

The concentrations and stoichiometry of soil carbon (C), nitrogen (N), and phosphorus (P) have critical implications for nutrient cycling and ecosystem function. While their high sensitivity to atmospheric N deposition is well known, it remains unclear for the soil depth-dependence of such responses to N deposition. Here, we examined the responses of soil C : N : P stoichiometry at three soil depths in the upper humus horizon (0–5, 5–10, and 10–20 cm) of Haplic Chernozem (Loamic) across a gradient of urea addition rates (0, 2, 10, 20, and 50 g N m–2 year–1) after five years treatments in a hay-harvest meadow steppe of northern China. We found that the effects of increasing N addition rates on the concentrations and stoichiometry of soil C, N and P did not depend on soil depth, though those parameters varied greatly across different soil layers. Across all soil depths, the concentrations of soil C and N increased with increasing N addition rates, but soil P concentration was not affected by N addition. The higher sensitivity of soil N than soil C to N enrichment resulted in decreasing soil C : N ratio across the N addition gradient, especially for the surface soil layer. Soil N : P ratio showed a positive response to the increases of N addition rates. The unbalanced responses of soil C, N, and P concentrations to N enrichment, as indicated by the decreases of soil C : N ratio and the increases of soil N : P ratio across the N addition gradient, highlighted the role of N enrichment in decoupling soil nutrient cycling in the temperate steppe.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2

REFERENCES

  1. 1

    R. Bobbink, K. Hicks, J. Galloway, T. Spranger, R. Alkemade, M. Ashmore, M. Bustamante, et al., “Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis,” Ecol. Appl. 20 (1), 30–59 (2010).

    Google Scholar 

  2. 2

    K. Bradley, R. A. Drijber, and J. Knops, “Increased N availability in grassland soils modifies their microbial communities and decreases the abundance of arbuscular mycorrhizal fungi,” Soil Biol. Biochem. 38 (7), 1583–1595 (2006).

    Google Scholar 

  3. 3

    L. Bragazza, C. Freeman, T. Jones, H. Rydin, J. Limpens, N. Fenner, T. Ellis, R. Gerdol, M. Hájek, and T. Hájek. “Atmospheric nitrogen deposition promotes carbon loss from peat bogs,” Proc. Natl. Acad. Sci. U.S.A. 103 (51), 19386–19389 (2006).

    Google Scholar 

  4. 4

    J. M. Bremner and C. S. Mulvaney, “Nitrogen-total,” in Methods of Soil Analysis, Part 2: Chemical and Microbiological Properties, Ed. by A. L. Page, et al., (American Society of Agronomy, Madison, WI, 1982), pp. 595–608.

  5. 5

    C. C. Cleveland and D. Liptzin, “C : N : P stoichiometry in soil: is there a “redfield ratio” for the microbial biomass?” Biogeochemistry 85 (3), 235–252 (2007).

    Google Scholar 

  6. 6

    M. Delgado-Baquerizo, F. T. Maestre, A. Gallardo, M. A. Bowker, M. D. Wallenstein, J. L. Quero, V. Ochoa, et al., “Decoupling of soil nutrient cycles as a function of aridity in global drylands,” Nature 502 (7473), 672–676 (2013).

    Google Scholar 

  7. 7

    J. J. Elser, R. W. Sterner, E. Gorokhova, W. F. Fagan, T. A. Markow, J. B. Cotner, J. F. Harrison, et al., “Biological stoichiometry from genes to ecosystems,” Ecol. Lett. 3 (6), 540–550 (2000).

    Google Scholar 

  8. 8

    H. J. Fang, S. L. Cheng, G. R. Yu, X. M. Yang, M. J. Xu, Y. S. Wang, L. S. Li, X. S. Dang, L. Wang, and Y. N. Li, “Nitrogen deposition impacts on the amount and stability of soil organic matter in an alpine meadow ecosystem depend on the form and rate of applied nitrogen,” Eur. J. Soil Sci. 65 (4), 510–519 (2014).

    Google Scholar 

  9. 9

    A. C. Finzi, A. T. Austin, E. E. Cleland, S. D. Frey, B. Z. Houlton, and M. D. Wallenstein, “Responses and feedbacks of coupled biogeochemical cycles to climate change: examples from terrestrial ecosystems,” Front. Ecol. Environ. 9 (1), 61–67 (2011).

    Google Scholar 

  10. 10

    J. N. Galloway, F. J. Dentener, D. G. Capone, E. W. Boyer, R. W. Howarth, S. P. Seitzinger, G. P. Asner, et al., “Nitrogen cycles: past, present, and future,” Biogeochemistry 70 (2), 153–226 (2004).

    Google Scholar 

  11. 11

    W. L. Gao, W. Zhao, H. Yang, H. J. Yang, G. Q. Chen, Y. C. Luo, H. J. Fang, and S. G. Li, “Effects of nitrogen addition on soil inorganic N content and soil N mineralization of a cold-temperate coniferous forest in Great Xing’an Mountains,” Acta Ecol. Sin. 35 (5), 130–136 (2015).

    Google Scholar 

  12. 12

    F. Hagedorn, D. Spinnler, and R. Siegwolf, “Increased N deposition retards mineralization of old soil organic matter,” Soil Biol. Biochem. 35 (12), 1683–1692 (2003).

    Google Scholar 

  13. 13

    Y. H. Han, S. K. Dong, Z. Z. Zhao, W. Sha, S. Li, H. H. Shen, J. N. Xiao, J. Zhang, X. Y. Wu, and X. M. Jiang, “Response of soil nutrients and stoichiometry to elevated nitrogen deposition in alpine grassland on the Qinghai-Tibetan Plateau,” Geoderma 343, 263–268 (2019).

    Google Scholar 

  14. 14

    N. P. He, Q. Yu, R. M. Wang, Y. H. Zhang, Y. Gao, and G. R. Yu, “Enhancement of carbon sequestration in soil in the temperature grasslands of northern China by addition of nitrogen and phosphorus,” PLoS One 8 (10), e77241 (2013).

    Google Scholar 

  15. 15

    E. G. Jobbágy and R. B. Jackson, “The distribution of soil nutrients with depth: Global patterns and the imprint of plants,” Biogeochemistry 53 (1), 51–77 (2001).

    Google Scholar 

  16. 16

    D. S. LeBauer and K. K. Treseder, “Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed,” Ecology 89 (2), 371–379 (2008).

    Google Scholar 

  17. 17

    L. Letkeman, H. Tiessen, and C. Campbell, “Phosphorus transformations and redistribution during pedogenesis of western Canadian soils,” Geoderma 71 (3–4), 201–218 (1996).

    Google Scholar 

  18. 18

    C. L. Li, S. H. Luo, S. D. Ge, L. Zhao, Q. M. Dong, Q. Li, and X. Q. Zhao, “Convergent and divergent responses of topsoil nitrogen and phosphorus content to nutrient addition in natural and restored alpine grasslands around the Qinghai lake basin,” Agric. Ecosyst. Environ. 282, 1–12 (2019).

    Google Scholar 

  19. 19

    W. X. Liu, C. L. Qiao, S. D. Yang, W. M. Bai, and L. L. Liu, “Microbial carbon use efficiency and priming effect regulate soil carbon storage under nitrogen deposition by slowing soil organic matter decomposition,” Geoderma 332, 37–44 (2018).

    Google Scholar 

  20. 20

    X. J. Liu, L. Duan, J. M. Mo, E. Z. Du, J. L. Shen, X. K. Lu, Y. Zhang, X. B. Zhou, C. N. He, and F. S. Zhang. “Nitrogen deposition and its ecological impact in China: an overview,” Environ. Pollut. 159 (10), 2251–2264 (2011).

    Google Scholar 

  21. 21

    F. M. Lü, X. T. Lü, W. Liu, X. Han, G. M. Zhang, D. L. Kong, and X. G. Han, “Carbon and nitrogen storage in plant and soil as related to nitrogen and water amendment in a temperate steppe of northern China,” Biol. Fertil. Soils 47 (2), 187–196 (2011).

    Google Scholar 

  22. 22

    X. T. Lü, S. Reed, Q. Yu, N. P. He, Z. W. Wang, and X. G. Han, “Convergent responses of nitrogen and phosphorus resorption to nitrogen inputs in a semiarid grassland,” Global Change Biol. 19 (9), 2775–2784 (2013).

    Google Scholar 

  23. 23

    M. von Lützow and I. Kögel-Knabner, “Temperature sensitivity of soil organic matter decomposition—What do we know?” Biol. Fertil. Soils 46 (1), 1–15 (2009).

    Google Scholar 

  24. 24

    T. Y. Ma, X. Y. Liu, S. Q. Xu, H. R. Guo, H. Huang, C. C. Hu, D. Wu, Z. C. Sun, C. J. Chen, and W. Song, “Levels and variations of soil organic carbon and total nitrogen among forests in a hotspot region of high nitrogen deposition,” Sci. Total Environ. 713, 136620 (2020).

    Google Scholar 

  25. 25

    N. Mahowald, T. D. Jickells, A. R. Baker, P. Artaxo, C. R. Benitez-Nelson, G. Bergametti, T. C. Bond, et al., “Global distribution of atmospheric phosphorus sources, concentrations and deposition rates, and anthropogenic impacts,” Global Biogeochem. Cycle 22, GB4026 (2008).

  26. 26

    S. Manzoni, R. B. Jackson, J. A. Trofymow, and A. Porporato, “The global stoichiometry of litter nitrogen mineralization,” Science 321 (5889), 684–686 (2008).

    Google Scholar 

  27. 27

    D. Menge and C. B. Field, “Simulated global changes alter phosphorus demand in annual grassland,” Global Change Biol. 13 (12), 2582–2591 (2007).

    Google Scholar 

  28. 28

    D. Nelson and F. Sommers, “Total carbon, organic carbon, and organic matter”, in Methods of Soil Analysis, Part 2: Chemical and Microbiological Properties, Ed. by A. L. Miller, et al. (American Society of Agronomy, Soil Science Society of American, Madison, WI, 1982), pp. 1–129.

  29. 29

    J. Peñuelas, B. Poulter, J. Sardans, P. Ciais, M. van der Velde, L. Bopp, O. Boucher, Y. Godderis, P. Hinsinger, and J. Llusia, “Human-induced nitrogen-phosphorus imbalances alter natural and managed ecosystems across the globe,” Nat. Commun. 4 (1), 1–10 (2013).

    Google Scholar 

  30. 30

    J. Peñuelas, J. Sardans, A. Rivas-Ubach, and I. A. Janssens, “The human-induced imbalance between C, N and P in Earth’s life system,” Global Change Biol. 18 (1), 3–6 (2012).

    Google Scholar 

  31. 31

    K. S. Pregitzer, A. J. Burton, D. R. Zak, and A. F. Talhelm, “Simulated chronic nitrogen deposition increases carbon storage in northern temperate forests,” Global Change Biol. 14 (1), 142–153 (2008).

    Google Scholar 

  32. 32

    Y. Qiao, J. Wang, H. M. Liu, K. Huang, Q. S. Yang, R. L. Lu, L. M. Yan, et al., “Depth-dependent soil C‒N–P stoichiometry in a mature subtropical broadleaf forest,” Geoderma 370, 114357 (2020).

    Google Scholar 

  33. 33

    C. E. Riggs, S. E. Hobbie, E. M. Bach, K. S. Hofmockel, and C. E. Kazanski, “Nitrogen addition changes grassland soil organic matter decomposition,” Biogeochemistry 125 (2), 203–219 (2015).

    Google Scholar 

  34. 34

    J. Sardans, A. Rivas-Ubach, and J. Peñuelas, “The C : N : P stoichiometry of organisms and ecosystems in a changing world: a review and perspectives,” Perspect. Plant Ecol. 14 (1), 33–47 (2012).

    Google Scholar 

  35. 35

    W. H. Schlesinger, J. J. Cole, A. C. Finzi, and E. A. Holland, “Introduction to coupled biogeochemical cycles,” Front. Ecol. Environ. 9 (1), 5–8 (2011).

    Google Scholar 

  36. 36

    B. Song, S. L. Niu, L. H. Li, L. X. Zhang, and G. R. Yu, “Soil carbon fractions in grasslands respond differently to various levels of nitrogen enrichments,” Plant Soil 384 (1–2), 401–412 (2014).

    Google Scholar 

  37. 37

    M. Spohn, “Microbial respiration per unit microbial biomass depends on litter layer carbon-to-nitrogen ratio,” Biogeosciences 12, 817–823 (2015).

    Google Scholar 

  38. 38

    R. W. Sterner and J. J. Elser, Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere (Princeton University Press, Princeton, 2002).

    Google Scholar 

  39. 39

    H. Q. Tian, G. S. Chen, C. Zhang, J. M. Melillo, and C. A. Hall, “Pattern and variation of C : N : P ratios in China’s soils: a synthesis of observational data,” Biogeochemistry 98 (1–3), 139–151 (2010).

    Google Scholar 

  40. 40

    L. M. Tian, L. Zhao, X. D. Wu, H. B. Fang, Y. H. Zhao, G. Y. Yue, G. M. Liu, and H. J. Chen, “Vertical patterns and controls of soil nutrients in alpine grassland: implications for nutrient uptake,” Sci. Total Environ. 607, 855–864 (2017).

    Google Scholar 

  41. 41

    P. M. Vitousek, S. Porder, B. Z. Houlton, and O. A. Chadwick, “Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen–phosphorus interactions,” Ecol. Appl. 20 (1), 5–15 (2010).

    Google Scholar 

  42. 42

    T. Walker and J. K. Syers, “The fate of phosphorus during pedogenesis,” Geoderma 15 (1), 1–19 (1976).

    Google Scholar 

  43. 43

    R. Z. Wang, T. R. Filley, Z. W. Xu, X. Wang, M. H. Li, Y. G. Zhang, W. T. Luo, and Y. Jiang, “Coupled response of soil carbon and nitrogen pools and enzyme activities to nitrogen and water addition in a semi-arid grassland of Inner Mongolia,” Plant Soil 381 (1–2), 323–336 (2014).

    Google Scholar 

  44. 44

    S. W. Xia, J. Chen, D. Schaefer, and M. Detto, “Scale-dependent soil macronutrient heterogeneity reveals effects of litterfall in a tropical rainforest,” Plant Soil 391 (1–2), 51–61 (2015).

    Google Scholar 

  45. 45

    G. G. Yang, X. T. Lü, C. J. Stevens, G. M. Zhang, H. Y. Wang, Z. W. Wang, Z. J. Zhang, Z. Y. Liu, and X. G. Han, “Mowing mitigates the negative impacts of N addition on plant species diversity,” Oecologia 189 (3), 769–779 (2019).

    Google Scholar 

  46. 46

    Y. H. Yang, J. Y. Fang, D. L. Guo, C. J. Ji, and W. H. Ma, “Vertical patterns of soil carbon, nitrogen and carbon: nitrogen stoichiometry in Tibetan grasslands,” Biogeosci. Discuss. 7, 1–24 (2010).

    Google Scholar 

  47. 47

    Z. P. Yu, M. H. Wang, Z. Q. Huang, T. C. Lin, M. A. Vadeboncoeur, E. B. Searle, and H. Y. H. Chen, “Temporal changes in soil C–N–P stoichiometry over the past 60 years across subtropical China,” Global Change Biol. 24 (3), 1308–1320 (2018).

    Google Scholar 

  48. 48

    K. Yue, D. A. Fornara, W. Q. Yang, Y. Peng, Z. J. Li, F. Z. Wu, and C. H. Peng, “Effects of three global change drivers on terrestrial C : N : P stoichiometry: a global synthesis,” Global Change Biol. 23 (6), 2450–2463 (2017).

    Google Scholar 

  49. 49

    N. Y. Zhang, R. Guo, P. Song, J. X. Guo, and Y. Z. Gao, “Effects of warming and nitrogen deposition on the coupling mechanism between soil nitrogen and phosphorus in Songnen meadow steppe, northeastern China,” Soil Biol. Biochem. 65, 96–104 (2013).

    Google Scholar 

  50. 50

    Y. Q. W. Zhong, W. M. Yan, and Z. P. Shangguan, “Soil organic carbon, nitrogen, and phosphorus levels and stocks after long-term nitrogen fertilization,” Clean: Soil, Air, Water 43 (11), 1538–1546 (2015).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank all the staff from Erguna Forest-Steppe Ecotone Research Station for their support in field work.

Funding

This work was supported by the National Natural Science Foundation of China (31670455, 31971750, 31600363, 31770502, and 31700391), Natural Science Foundation of Liaoning Province (2020–MZLH-20), Fundamental Research Funds for the Central Universities (Program for ecology research group), and the National Scholarship for Overseas Studying from China Scholarship Council (CSC No. 201808210005). XTL was supported by K.C.Wong Education Foundation (GJTD-2019-10).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Wuyunna.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

Research did not involve Human Participants and/or Animals. This article does not contain any studies with human participants or animals performed by any of the authors.

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, X.G., Wuyunna, Lü, X.T. et al. Soil C : N : P Stoichiometry as Related to Nitrogen Addition in a Meadow Steppe of Northern China. Eurasian Soil Sc. 54, 1581–1587 (2021). https://doi.org/10.1134/S1064229321100124

Download citation

Keywords:

  • biogeochemistry
  • C : N : P ratio
  • global change
  • nitrogen enrichment
  • soil layer