Skip to main content
Log in

Changes in the Soil Carbon Dioxide Efflux in Forest Ecosystems Caused by Technogenic Pollution in the Kola Subarctic

  • DEGRADATION, REHABILITATION, AND CONSERVATION OF SOILS
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

The total soil CO2 efflux and its constituents were analyzed along the gradients of pollution of forest ecosystems by the emissions from nonferrous metallurgy plants in the Kola Subarctic. The CO2 efflux from the soil surface was measured by the closed chamber method. The summer efflux was calculated using the regression dependences of CO2 emission on air temperature. The root and microbial respirations were separated using the field method of substrate-induced respiration. The soil CO2 efflux reached relatively high values in the background pine (200 g C/m2/summer), birch (460 g C/m2/summer), and spruce (420 g С/m2/summer) forests. The bulk of CO2 produced in the soils under these forests was due to root respiration (45–70%). Closer to pollution sources, a decrease in microbial and plant biomass, depletion of mineral nutrients, and accumulation of heavy metals were observed in soils. As a result, the CO2 efflux decreased by up to 1.5 times in the zone of defoliation of the trees, 10 times in the zone of technogenic sparse forests, and 20 times in the zone of technogenic barrens. Defoliation of forests was accompanied by some activation of microbial respiration because of the additional input of nutritional substrate for microorganisms. The degradation and death of vegetation resulted in an expectable decrease in root respiration and its complete suppression in technogenic barrens. The results of this study indicate that monitoring of the soil CO2 efflux helps to identify the specific features in the functioning of forest ecosystems during technogenic degradation and to develop efficient methods for their remediation under industrial pollution in the Arctic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

REFERENCES

  1. N. D. Ananyeva, Microbiological Self-Purification and Stability of Soils (Nauka, Moscow, 2003) [in Russian].

    Google Scholar 

  2. N. D. Ananyeva, E. V. Stolnikova, E. A. Susyan, and A. K. Khodzhaeva, “The fungal and bacterial biomass (selective inhibition) and the production of CO2 and N2O by soddy-podzolic soils of postagrogenic biogeocenoses,” Eurasian Soil Sci. 43, 1287–1293 (2010).

    Article  Google Scholar 

  3. E. V. Blagodatskaya, T. V. Pampura, I. N. Bogomolova, G. N. Koptsik, and N. V. Lukina, “Effect of emissions from a Copper-Nickel Smelter on soil microbial communities in forest biogeocenoses of the Kola Peninsula,” Biol. Bull. (Moscow) 35, 202–210 (2008).

    Article  Google Scholar 

  4. A. V. Bogorodskaya, T. V. Ponomareva, O. A. Shapchenkova, and A. S. Shishikin, “Assessment of the state of soil microbial cenoses in the forest-tundra zone under conditions of airborne industrial pollution,” Eurasian Soil Sci. 45, 521–531 (2012).

    Article  Google Scholar 

  5. I. V. Yevdokimov, A. A. Larionova, M. Schmitt, V. O. Lopes de Gerenyu, and M. Bahn, Experimental assessment of the contribution of plant root respiration to the emission of carbon dioxide from the soil,” Eurasian Soil Sci. 44, 1373–1381 (2010).

    Article  Google Scholar 

  6. G. A. Evdokimova, G. V. Kalabin, and N. P. Mozgova, “Contents and toxicity of heavy metals in soils of the zone affected by aerial emissions from the Severonikel Enterprise,” Eurasian Soil Sci. 44, 237–244 (2011).

    Article  Google Scholar 

  7. G. A. Evdokimova, N. P. Mozgova, and M. V. Korneikova, “The content and toxicity of heavy metals in soils affected by aerial emissions from the Pechenganikel plant,” Eurasian Soil Sci. 47, 504–510 (2014).

    Article  Google Scholar 

  8. M. S. Kadulin and G. N. Koptsik, “Carbon dioxide emission by soils as a criterion for remediation effectiveness of industrial barrens near copper-nickel plants in the Kola Subarctic,” Russ. J. Ecol. 50, 535–542 (2019).

    Article  Google Scholar 

  9. M. S. Kadulin and G. N. Koptsik, “Emission of CO2 by soils in the impact zone of the Severonikel smelter in the Kola subarctic region,” Eurasian Soil Sci. 46, 1107–1116 (2013).

    Article  Google Scholar 

  10. M. S. Kadulin, I. E. Smirnova, and G. N. Koptsik, “The emission of carbon dioxide from soils of the Pasvik Nature Reserve in the Kola Subarctic,” Eurasian Soil Sci. 50, 1055–1068 (2017).

    Article  Google Scholar 

  11. D. V. Karelin, D. G. Zamolodchikov, V. V. Kaganov, A. V. Pochikalov, and M. L. Gitarskii, “Microbial and root components of respiration of sod-podzolic soils in boreal forest,” Contemp. Probl. Ecol. 10, 717–727 (2017).

    Article  Google Scholar 

  12. G. M. Kashulina, V. N. Pereverzev, and T. I. Litvinova, “Transformation of the soil organic matter under the extreme pollution by emissions of the Severonikel smelter,” Eurasian Soil Sci. 43, 1174–1183 (2010).

    Article  Google Scholar 

  13. G. N. Koptsik, M. S. Kadulin, and A. I. Zakharova, “The effect of technogenic contamination on carbon dioxide emission by soils in the Kola Subarctic,” Biol. Bull. Rev. 5, 480–492 (2015).

    Article  Google Scholar 

  14. V. N. Kudeyarov, “Soil respiration and biogenic carbon dioxide sink in the territory of Russia: an analytical review,” Eurasian Soil Sci. 51, 599–612 (2018). https://doi.org/10.1134/S1064229318060091

    Article  Google Scholar 

  15. I. N. Kurganova, V. O. Lopes de Gerenyu, V. N. Kudeyarov, and A. T. Zhiengaliyev, “Carbon budgets in the steppe ecosystems of Russia,” Dokl. Earth Sci. 485, 450–452 (2019).

    Article  Google Scholar 

  16. Forest Ecosystems and Atmospheric Pollution, Ed. by V. A. Alekseeva (Nauka, Leningrad, 1990) [in Russian].

    Google Scholar 

  17. I. V. Lyanguzova, “Dynamic trends of heavy metal contents in plants and soil under different industrial air pollution regimes,” Russ. J. Ecol. 48, 311–320 (2017).

    Article  Google Scholar 

  18. A. S. Nekrich and D. I. Lyuri, “Dynamics of agrarian resources of Russia in 1990–2014,” Izv. Ross. Akad. Nauk, Ser. Geogr., No. 3, 64–77 (2019).

  19. V. N. Kudeyarov, G. A. Zavarzin, S. A. Blagodatskii, A. V. Borisov, P. Yu. Voronin, V. A. Demkin, T. S. Demkina, I. V. Evdokimov, D. G. Zamolodchikov, D. V. Karelin, A. S. Komarov, I. N. Kurganova, A. A. Larionova, V. O. Lopes de Gerenyu, A. I. Utkin, and O. G. Chertov, Carbon Pools and Fluxes in Terrestrial Ecosystems of Russia, Ed. by G. A. Zavarzin (Nauka, Moscow, 2007) [in Russian].

    Google Scholar 

  20. A. V. Smagin, Gaseous Phase of Soils (Moscow State University, Moscow, 2005) [in Russian].

    Google Scholar 

  21. I. A. Smorkalov and I. A. Vorobeichik, “Mechanism of stabile CO2 emission from forest litter affected by industrial pollution,” Lesovedenie, No. 1, 34–43 (2016).

    Google Scholar 

  22. I. A. Smorkalov and I. A. Vorobeichik, “Soil respiration of forest ecosystems in gradients of environmental pollution by emissions from copper smelters,” Russ. J. Ecol. 42, 429–435 (2011).

    Article  Google Scholar 

  23. O. V. Trefilova, “The intensity of heterotrophic respiration in pine forests of the middle taiga: a comparative analysis of assessment methods,” Khvoinye Boreal’noi Zony 24 (4–5), 467–473 (2007).

    Google Scholar 

  24. B. Bond-Lamberty, C. Wang, and S. T. Gower, “Contribution of root respiration to soil surface CO2 flux in a boreal black spruce chronosequence,” Tree Physiol. 24, 1387–1395 (2004). https://doi.org/10.1093/treephys/24.12.1387

    Article  Google Scholar 

  25. R. D. Boone, K. J. Nadelhoffer, J. D. Canary, and J. P. Kaye, “Roots exert a strong influence on the temperature sensitivity of soil respiration,” Nature 396, 570–572 (1998). https://doi.org/10.1038/25119

    Article  Google Scholar 

  26. P. C. Brookes, “The use of microbial parameters in monitoring soil pollution by heavy metals,” Biol. Fertil. Soils 19, 269–279 (1995). https://doi.org/10.1007/BF00336094

    Article  Google Scholar 

  27. J. Cui, R. Zhang, N. Bu, H. Zhang, B. Tang, Z. Li, L. Jiang, J. Chen, and C. Fang, “Changes in soil carbon sequestration and soil respiration following afforestation on paddy fields in north subtropical China,” J. Plant Ecol. 6 (3), 240–252 (2013). https://doi.org/10.1093/jpe/rts023

    Article  Google Scholar 

  28. J. Eriksen and L. S. Jensen, “Soil respiration, nitrogen mineralization and uptake in barley following cultivation of grazed grasslands,” Biol. Fertil. Soils 33 (2), 139–145 (2001). https://doi.org/10.1007/s003740000302

    Article  Google Scholar 

  29. K. E. Giller, E. Witter, and S. P. McGrath, “Heavy metals and soil microbes,” Soil Biol. Biochem. 41 (10), 2031–2037 (2009). https://doi.org/10.1016/j.soilbio.2009.04.026

    Article  Google Scholar 

  30. G. Jentschke and D. L. Godbold, “Metal toxicity and ectomycorrhizas,” Physiol. Plant 109 (2), 107–116 (2000). https://doi.org/10.1034/j.1399-3054.2000.100201.x

    Article  Google Scholar 

  31. J. Jian, R. Vargas, K. Anderson-Teixeira, E. Stell, V. Herrmann, M. Horn, N. Kholod, J. Manzon, R. Marchesi, D. Paredes, and B. Bond-Lamberty, “A restructured and updated global soil respiration database (SRDB-V5),” Earth Syst. Sci. Data 13, 255–267 (2021). https://doi.org/10.5194/essd-2020-136

    Article  Google Scholar 

  32. D. L. Jones, “Organic acids in the rhizosphere—a critical review,” Plant Soil 205, 25–44 (1998). https://doi.org/10.1023/A:1004356007312

    Article  Google Scholar 

  33. D. Karelin, S. Goryachkin, E. Zazovskaya, V. Shishkov, A. Pochikalov, A. Dolgikh, A. Sirin, et al., “Greenhouse gas emission from the cold soils of Eurasia in natural settings and under human impact: controls on spatial variability,” Geoderma Reg. 22, e00290 (2020). https://doi.org/10.1016/j.geodrs.2020.e00290

    Article  Google Scholar 

  34. M. V. Kozlov, E. L. Zvereva, and V. E. Zverev, “Soil quality,” in Impacts of Point Polluters on Terrestrial Biota. Environmental Pollution (Springer-Verlag, Dordrecht, 2009), Vol. 15, pp. 107–131. https://doi.org/10.1007/978-90-481-2467-1_3

  35. J. Lloyd and J. A. Taylor, “On the temperature dependence of soil respiration,” Funct. Ecol. 8, 315–323 (1994). https://doi.org/10.2307/2389824

    Article  Google Scholar 

  36. B. Longdoz, M. Yernaux, and M. Aumbinet, “Soil CO2 efflux measurements in a mixed forest: impact of chamber disturbances, spatial variability and seasonal evolution,” Global Change Biol. 6, 907–917 (2000). https://doi.org/10.1046/j.1365-2486.2000.00369.x

    Article  Google Scholar 

  37. J. W. Raich and W. H. Schlesinger, “The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate,” Tellus B 44 (2), 81–99 (1992). https://doi.org/10.1034/j.1600-0889.1992.t01-1-00001.x

    Article  Google Scholar 

  38. P. W. Ramsey, M. C. Rillig, K. P. Feris, N. S. Gordon, J. N. Moore, W. E. Holben, and J. E. Gannon, “Relationship between communities and processes; new insights from a field study of a contaminated ecosystem,” Ecol. Lett. 8 (11), 1201–1210 (2005). https://doi.org/10.1111/j.1461-0248.2005.00821.x

    Article  Google Scholar 

  39. B. S. Razavi, E. Blagodatskaya, and Y. Kuzyakov, “Nonlinear temperature sensitivity of enzyme kinetics explains canceling effect—a case study on loamy haplic Luvisol,” Front. Microbiol. 6 (1126), 1–13 (2015). https://doi.org/10.3389/fmicb.2015.01126

    Article  Google Scholar 

  40. W. H. Schlesinger and J. A. Andrews, “Soil respiration and the global carbon cycle,” Biogeochemistry 48 (1), 7–20 (2000). https://doi.org/10.1023/A:1006247623877

    Article  Google Scholar 

  41. N. Shukurov, S. Pen-Mouratov, and Y. Steinberger, “The impact of the Almalyk Industrial Complex on soil chemical and biological properties,” Environ. Pollut. 136 (2), 331–340 (2005). https://doi.org/10.1016/j.envpol.2004.12.007

    Article  Google Scholar 

  42. M. Smiri, A. Chaoui, and E. El Ferjani, “Respiratory metabolism in the embryonic axis of germinating pea seed exposed to cadmium,” J. Plant Physiol. 166 (3), 259–269 (2009). https://doi.org/10.1016/j.jplph.2008.05.006

    Article  Google Scholar 

  43. J. A. Subke, M. Reichstein, and J. D. Tenhunen, “Explaining temporal variation in soil CO2 efflux in a mature spruce forest in Southern Germany,” Soil Biol. Biochem. 35, 1467–1483 (2003). https://doi.org/10.1016/S0038-0717(03)00241-4

    Article  Google Scholar 

  44. E. D. Vance, P. C. Brookes, and D. S. Jenkinson, “An extraction method for measuring soil microbial biomass,” Soil Biol. Biochem. 19, 703–707. 1987). https://doi.org/10.1016/0038-0717(87)90052-6

    Article  Google Scholar 

Download references

Funding

This study work was supported by the Russian Foundation for Basic Research (project no. 18-04-01028).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. N. Koptsik.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by G. Chirikova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kadulin, M.S., Koptsik, G.N. Changes in the Soil Carbon Dioxide Efflux in Forest Ecosystems Caused by Technogenic Pollution in the Kola Subarctic. Eurasian Soil Sc. 54, 1588–1598 (2021). https://doi.org/10.1134/S1064229321100070

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229321100070

Keywords: