Skip to main content
Log in

Methodological Aspects of the Determination of Fatty Acids in Soil by Thermochemolysis

  • SOIL CHEMISTRY
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

Fatty acids (FAs) are among the most informative parts of nonspecific soil organic matter). Their composition and content reflect the specific features of many soil processes and the structure of the soil microbiome. One of the simplest and fastest methods to analyze FAs is thermochemolysis. Thermochemolysis is widely used to assess the content and composition of soil FAs but has many insufficiently clarified methodological issues. The goal of our work is to study the influence of various conditions of thermochemolysis on the detected FA composition by the case study of typical chernozem. The yield of fatty acid methyl esters (FAMEs) depending on the concentration of the methylating agent tetramethylammonium hydroxide (TMAH) is estimated as well as the pyrolysis temperature and the time of soil exposure to TMAH. It is shown that an excessive amount of the derivatizing agent at high pyrolysis temperature decreases the yield of FAMEs and the relative abundance of monounsaturated FAMEs. The optimal conditions for assaying the FA content are the temperature range of 300–500°C and 15–40 mmol/g C TMAH. It is shown that the time of soil exposure to TMAH before analysis has no effect on the results of thermochemolysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. I. I. Grandberg and N. L. Nam, Organic Chemistry (Yurait, Moscow, 2016) [in Russian].

    Google Scholar 

  2. E. A. Dmitriev, Mathematical Statistics in Soil Science (Moscow, 1996) [in Russian].

    Google Scholar 

  3. Classification and Diagnostics of Soils of the Soviet Union (Kolos, Moscow, 1977) [in Russian].

  4. A. T. Lebedev, Mass-Spectrometry in Organic Chemistry (Tekhnosfera, Moscow, 2015) [in Russian].

    Google Scholar 

  5. N. A. Nizovtsev, V. A. Kholodov, V. A. Ivanov, Yu. R. Farkhodov, and A. A. Dymov, “Nonspecific organic compounds in peat soils of the Subpolar Urals,” Eurasian Soil Sci. 50, 1048–1054 (2017). https://doi.org/10.1134/S1064229317070080

    Article  Google Scholar 

  6. D. S. Orlov, O. N. Biryukova, and N. I. Sukhanova, Soil Organic Matter in Russian Federation (Nauka, Moscow, 1996) [in Russian].

    Google Scholar 

  7. O. A. Rozentsvet, E. V. Fedoseeva, and V. A. Terekhova, “Lipid biomarkers in environmental assessment of soil biota: analysis of fatty acids,” Usp. Sovrem. Biol. 139 (2), 161–177 (2019). https://doi.org/10.1134/s0042132419020078

    Article  Google Scholar 

  8. V. A. Kholodov, Yu. R. Farkhodov, N. V. Yaroslavtseva, A. Yu. Aydiev, V. I. Lazarev, B. S. Ilyin, et al., “Thermolabile and thermostable organic matter of chernozems under different land uses,” Eurasian Soil Sci. 53, 1066–1078 (2020). https://doi.org/10.1134/S1064229320080086

    Article  Google Scholar 

  9. A. Asperger, W. Engewald, and G. Fabian, “Thermally assisted hydrolysis and methylation—a simple and rapid online derivatization method for the gas chromatographic analysis of natural waxes,” J. Anal. Appl. Pyrol. 61 (1–2), 91–109 (2001). https://doi.org/10.1016/s0165-2370(01)00116-4

  10. P. Barré, K. Quénéa, A. Vidal, L. Cécillon, B. T. Christensen, T. Kätterer, et al., “Microbial and plant-derived compounds both contribute to persistent soil organic carbon in temperate soils,” Biogeochemistry 140 (1), 81–92 (2018). https://doi.org/10.1007/s10533-018-0475-5

    Article  Google Scholar 

  11. M. I. Ch, Y. F. Wen, and Y. Cheng, “Gas chromatographic/mass spectrometric analysis of the essential oil of Houttuynia cordata Thunb. by using on-column methylation with tetramethylammonium acetate,” J. AOAC Int. 90 (1), 60–67 (2007.

    Google Scholar 

  12. J. M. Challinor, “The scope of pyrolysis methylation reactions,” J. Anal. Appl. Pyrol. 20, 15–24 (1991). https://doi.org/10.1016/0165-2370(91)80059-h

    Article  Google Scholar 

  13. J. M. Challinor, “Review: The development and applications of thermally assisted hydrolysis and methylation reactions,” J. Anal. Appl. Pyrol. 61 (1–2), 3–34 (2001). https://doi.org/10.1016/s0165-2370(01)00146-2

    Article  Google Scholar 

  14. S. K. Dodla, J. J. Wang, and R. L. Cook, “Molecular composition of humic acids from coastal wetland soils along a salinity gradient,” Soil Sci. Soc. Am. J. 76 (5), 1592–1605 (2012). https://doi.org/10.2136/sssaj2011.0346

    Article  Google Scholar 

  15. D. T. Downing and R. S. Greene, “Methylation of fatty acids by pyrolysis of their tetramethylammonium salts in the gas chromatograph,” Anal. Chem. 40 (4), 827–828 (1968). https://doi.org/10.1021/ac60260a035

    Article  Google Scholar 

  16. C. Ferro-Vázquez, J. Kaal, F. J. Santos Arévalo, and F. Criado Boado, “Molecular fingerprinting of 14C dated soil organic matter fractions from archaeological settings in NW Spain,” Radiocarbon 61 (1), 101–130 (2019). https://doi.org/10.1017/rdc.2018.62

    Article  Google Scholar 

  17. C. Guignard, L. Lemée, and A. Amblès, “Lipid constituents of peat humic acids and humin. Distinction from directly extractable bitumen components using TMAH and TEAAc thermochemolysis,” Org. Geochem. 36 (2), 287–297 (2005). https://doi.org/10.1016/j.orggeochem.2004.07.016

    Article  Google Scholar 

  18. M. Han, W. Yi, Q. Wu, Y. Liu, Y. Hong, and D. Wang, “Preparation of biodiesel from waste oils catalyzed by a Brønsted acidic ionic liquid,” Bioresour. Technol. 100 (7)¸ 2308–2310 (2009). https://doi.org/10.1016/j.biortech.2008.10.046

  19. Y. He, A. Buch, C. Szopa, A. J. Williams, M. Millan, M. Guzman, et al., “The search for organic compounds with TMAH thermochemolysis: from Earth analyses to space exploration experiments,” TrAC, Trends Anal. Chem. 127, (2020). https://doi.org/10.1016/j.trac.2020.115896

  20. IUSS Working Group WRB, World Reference Base for Soil Resources 2014, International Soil Classification System for Naming Soils and Creating Legends for Soil Maps, World Soil Resources Reports No. 106 (UN Food and Agriculture Organization, Rome, 2014).

    Google Scholar 

  21. L. Jeanneau, A. Jaffrezic, A.-C. Pierson-Wickmann, G. Gruau, T. Lambert, and P. Petitjean, “Constraints on the sources and production mechanisms of dissolved organic matter in soils from molecular biomarkers,” Vadose Zone J. 13 (7), (2014). https://doi.org/10.2136/vzj2014.02.0015

  22. R. Jeannotte, C. Hamel, S. Jabaji, and J. K. Whalen, “Comparison of solvent mixtures for pressurized solvent extraction of soil fatty acid biomarkers,” Talanta 77 (1), 195–199 (2008). https://doi.org/10.1016/j.talanta.2008.06.006

    Article  Google Scholar 

  23. A. Klingberg, J. Odermatt, and D. Meier, “Influence of parameters on pyrolysis-GC/MS of lignin in the presence of tetramethylammonium hydroxide,” J. Anal. Appl. Pyrol. 74 (1–2), 104–109 (2005). https://doi.org/10.1016/j.jaap.2004.11.023

    Article  Google Scholar 

  24. R. Lal, “Sequestration of atmospheric CO2 in global carbon pools,” Energy Environ. Sci. 1 (1), 86–100 (2008). https://doi.org/10.1039/b809492f

    Article  Google Scholar 

  25. E. F. McFarren, R. J. Lishka, and J. H. Parker, “Criterion for judging acceptability of analytical methods,” Anal. Chem. 42 (3), 358–365 (1970). https://doi.org/10.1021/ac60285a009

    Article  Google Scholar 

  26. K. G. J. Nierop, C. M. Preston, and J. Kaal, “Thermally assisted hydrolysis and methylation of purified tannins from plants,” Anal. Chem. 77 (17), 5604–5614 (2005). https://doi.org/10.1021/ac050564r

    Article  Google Scholar 

  27. K. G. J. Nierop and T. R. Filley, “Simultaneous analysis of tannin and lignin signatures in soils by thermally assisted hydrolysis and methylation using 13C-labeled TMAH,” J. Anal. Appl. Pyrol. 83 (2), 227–231 (2008). https://doi.org/10.1016/j.jaap.2008.07.004

    Article  Google Scholar 

  28. K. K. Nkongolo and R. Narendrula-Kotha, “Advances in monitoring soil microbial community dynamic and function,” J. Appl. Genet. 61 (2), 249–263 (2020). https://doi.org/10.1007/s13353-020-00549-5

    Article  Google Scholar 

  29. J. Novak, Quantitative Analysis by Gas Chromatography (Marcel Dekker, New York, 1975).

    Google Scholar 

  30. L. G. Oates, H. W. Read, J. L. M. Gutknecht, D. S. Duncan, T. B. Balser, and R. D. Jackson, “A lipid extraction and analysis method for characterizing soil microbes in experiments with many samples,” J. Visualized Exp. 125, (2017). https://doi.org/10.3791/55310

  31. J. Pecha, L. Šánek, T. Fürst, and K. Kolomazník, “A kinetics study of the simultaneous methanolysis and hydrolysis of triglycerides,” Chem. Eng. J. 288, 680–688 (2016). https://doi.org/10.1016/j.cej.2015.12.033

    Article  Google Scholar 

  32. J. Poerschmann, Z. Parsi, T. Górecki, and J. Augustin, “Characterization of non-discriminating tetramethylammonium hydroxide-induced thermochemolysis-capillary gas chromatography-mass spectrometry as a method for profiling fatty acids in bacterial biomasses,” J. Chromatogr., A 1071 (1–2), 99–109 (2005). https://doi.org/10.1016/j.chroma.2004.10.010

    Article  Google Scholar 

  33. M. G. Reis, M. Martins dos Reis, S. Leath, and K. Stelwagen, “Direct analysis of fatty acid profile from milk by thermochemolysis–gas chromatography–mass spectrometry,” J. Chromatogr., A 1218 (2), 316–323 (2011). https://doi.org/10.1016/j.chroma.2010.11.011

    Article  Google Scholar 

  34. L. Ruess and P. M. Chamberlain, “The fat that matters: soil food web analysis using fatty acids and their carbon stable isotope signature,” Soil Biol. Biochem. 42 (11), 1898–1910 (2010). https://doi.org/10.1016/j.soilbio.2010.07.020

    Article  Google Scholar 

  35. F. Shadkami and R. Helleur, “Recent applications in analytical thermochemolysis,” J. Anal. Appl. Pyrol. 89 (1), 2–16 (2010). https://doi.org/10.1016/j.jaap.2010.05.007

    Article  Google Scholar 

  36. J. A. Siles, T. Cajthaml, A. Filipová, S. Minerbi, and R. Margesin, “Altitudinal, seasonal and interannual shifts in microbial communities and chemical composition of soil organic matter in Alpine forest soils,” Soil Biol. Biochem. 112, 1–13 (2017). https://doi.org/10.1016/j.soilbio.2017.04.014

    Article  Google Scholar 

  37. D. Valkova, L. Grasset, and A. Ambles, “Molecular compounds generated by ruthenium tetroxide oxidation and preparative off line thermochemolysis of lignite humic acids from South Moravia: Implications for molecular structure,” Fuel 88 (11), 2113–2121 (2009). https://doi.org/10.1016/j.fuel.2009.01.026

    Article  Google Scholar 

  38. J. M. van Mourik, K. G. J. Nierop, and D. A. G. Vandenberghe, “Radiocarbon and optically stimulated luminescence dating based chronology of a polycyclic driftsand sequence at Weerterbergen (SE Netherlands),” Catena 80 (3), 170–181 (2010). https://doi.org/10.1016/j.catena.2009.11.004

    Article  Google Scholar 

  39. A. Vidal, K. Quenea, M. Alexis, and S. Derenne, “Molecular fate of root and shoot litter on incorporation and decomposition in earthworm casts,” Org. Geochem. 101, 1–10 (2016). https://doi.org/10.1016/j.orggeochem.2016.08.003

    Article  Google Scholar 

  40. A. J. Williams, J. Eigenbrode, M. Floyd, M. B. Wilhelm, S. O’Reilly, S. S. Johnson, et al., “Recovery of fatty acids from mineralogical Mars analogs by TMAH thermochemolysis for the sample analysis at Mars wet chemistry experiment on the curiosity rover,” Astrobiology 19 (4), 522–546 (2019). https://doi.org/10.1089/ast.2018.1819

    Article  Google Scholar 

  41. M. G. Williams and J. MacGee, “Quantitative recovery of poly-unsaturated fatty-acids on pyrolytic methylation of their trimethylphenylammonium salts,” J. Chromatogr. 234 (2), 468–471 (1982). https://doi.org/10.1016/s0021-9673(00)81888-9

    Article  Google Scholar 

  42. H. Yoshida, K. Sazawa, N. Wada, N. Hata, K. Marumo, M. Fukushima, and H. Kuramitz, “Changes in the chemical composition of soil organic matter including water-soluble component during incubation: a case study of coniferous and broadleaf forest soils,” Catena 171, 22–28 (2018). https://doi.org/10.1016/j.catena.2018.06.032

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The work was performed using the equipment of the joint access center “Functions and Properties of Soils and Soil Cover” with the Dokuchaev Soil Science Institute, Russian Academy of Sciences.

Funding

This study was supported by the Russian Science Foundation (project no. 19-16-00053).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. R. Farkhodov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by G. Chirikova

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farkhodov, Y.R., Yaroslavtseva, N.V. & Kholodov, V.A. Methodological Aspects of the Determination of Fatty Acids in Soil by Thermochemolysis. Eurasian Soil Sc. 54, 1176–1182 (2021). https://doi.org/10.1134/S1064229321080068

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229321080068

Keywords:

Navigation