Skip to main content

Alternative α* Parameter Estimation for Simplified Beerkan Infiltration Method to Assess Soil Saturated Hydraulic Conductivity

Abstract

In situ characterization of the saturated hydraulic conductivity (Ks) requires a large number of experiments, sampling, and laboratory measurements that are time-consuming and expensive. Simplified Beerkan Infiltration (SBI) method was developed to estimate an approximate Ks based on the infiltration curve without any sampling procedures. For that purpose, α* parameter, which is used in the calculation of Ks, was commonly set to a fixed value based on soil texture. This approach was not sufficient for an accurate Ks estimation. For a relatively dry soil, a new approach involving an empirical structural parameter was proposed to calculate an approximation of the α* parameter based on the shape of the steady state asymptote of the Beerkan cumulative infiltration. The new α* parameter was tested on simplified Beerkan infiltration (SBI) method in over 32 Beerkan experiments selected from the Soil World Infiltration Global (SWIG) database. The steady state SBI (SSBI) method estimated Ks with an accuracy close to those estimated with the BEST (Beerkan Estimation Soil Transfer) method. The R2 correlation factor for the SSBI method in Ks estimation with BEST intercept and steady methods were 0.982 and 0.994, respectively. For the transient SBI method, the R2 correlation factors calculated with BEST methods were lower; 0.858 and 0.827, respectively. Therefore, the application of the new α* parameter to the steady state simplified Beerkan approach allows an easy, inexpensive way to estimate accurately Ks.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. 1

    S. Akbulut, “Artificial neural networks for predicting the hydraulic conductivity of coarse-grained soils,” Eurasian Soil Sci. 38, 392–398 (2005).

    Google Scholar 

  2. 2

    R. Angulo-Jaramillo, V. Bagarello, M. Iovino, and L. Lassabatere, Infiltration Measurements for Soil Hydraulic Characterization (Springer-Verlag, Cham, 2016). https://doi.org/10.1007/978-3-319-31788-5

  3. 3

    R. Angulo-Jaramillo, J. P. Vandervaere, S. Roulier, J. L. Thony, J. P. Gaudet, and M. Vauclin, “Field measurement of soil surface hydraulic properties by disc and ring infiltrometers: a review and recent developments,” Soil Tillage Res. 55 (1–2), 1–29 (2000). https://doi.org/10.1016/S0167-1987(00)00098-2

    Article  Google Scholar 

  4. 4

    V. Bagarello, M. Castellini, S. Di Prima, G. Giordano, and M. Iovino, “Testing a simplified approach to determine field saturated soil hydraulic conductivity,” Procedia Environ. Sci. 19, 599–608 (2013). https://doi.org/10.1016/j.proenv.2013.06.068

    Article  Google Scholar 

  5. 5

    V. Bagarello, S. Di Prima, and M. Iovino, “Comparing alternative algorithms to analyze the Beerkan infiltration experiment,” Soil Sci. Soc. Am. J. 78 (3), 724–736 (2014). https://doi.org/10.2136/sssaj2013.06.0231

    Article  Google Scholar 

  6. 6

    V. Bagarello, S. Di Prima, and M. Iovino, “Estimating saturated soil hydraulic conductivity by the near steady-state phase of a Beerkan infiltration test,” Geoderma 303, 70–77 (2017). https://doi.org/10.1016/j.geoderma.2017.04.030

    Article  Google Scholar 

  7. 7

    V. Bagarello, S. Di Prima, M. Iovino, and G. Provenzano, “Estimating field-saturated soil hydraulic conductivity by a simplified Beerkan infiltration experiment,” Hydrol. Process. 28 (3), 1095–1103 (2014). https://doi.org/10.1002/hyp.9649

    Article  Google Scholar 

  8. 8

    I. Braud, D. De Condappa, J. M. Soria, R. Haverkamp, R. Angulo-Jaramillo, S. Galle, and M. Vauclin, “Use of scaled forms of the infiltration equation for the estimation of unsaturated soil hydraulic properties (the Beerkan method),” Eur. J. Soil Sci. 56 (3), 361–374 (2005). https://doi.org/10.1111/j.1365-2389.2004.00660.x

    Article  Google Scholar 

  9. 9

    R. H. Brooks and A. T. Corey, “Hydraulic properties of porous media and their relation to drainage design,” Trans. ASAE 7 (1), 26–28 (1964). https://doi.org/10.13031/2013.40684

    Article  Google Scholar 

  10. 10

    N. Burdine, “Relative permeability calculations from pore size distribution data,” J. Petrol. Technol. 5 (3), 71–78 (1953). https://doi.org/10.2118/225-G

    Article  Google Scholar 

  11. 11

    M. Castellini, M. Iovino, M. Pirastru, M. Niedda, and V. Bagarello, “Use of BEST procedure to assess soil physical quality in the Baratz Lake catchment (Sardinia, Italy),” Soil Sci. Soc. Am. J. 80 (3), 742–755 (2016). https://doi.org/10.2136/sssaj2015.11.0389

    Article  Google Scholar 

  12. 12

    S. Di Prima, M. Castellini, M. R. A. Najm, R. D. Stewart, R. Angulo-Jaramillo, T. Winiarski, and L. Lassabatere, “Experimental assessment of a new comprehensive model for single ring infiltration data,” J. Hydrol. 573, 937–951 (2019). https://doi.org/10.1016/j.jhydrol.2019.03.077

    Article  Google Scholar 

  13. 13

    S. Di Prima, P. Concialdi, L. Lassabatere, R. Angulo-Jaramillo, M. Pirastru, A. Cerda, and S. Keesstra, “Laboratory testing of Beerkan infiltration experiments for assessing the role of soil sealing on water infiltration,” Catena 167, 373–384 (2018). https://doi.org/10.1016/j.catena.2018.05.013

    Article  Google Scholar 

  14. 14

    S. Di Prima, L. Lassabatère, V. Bagarello, M. Iovino, and R. Angulo-Jaramillo, “Testing a new automated single ring infiltrometer for Beerkan infiltration experiments,” Geoderma 262, 20–34 (2016). https://doi.org/10.1016/j.geoderma.2015.08.006

    Article  Google Scholar 

  15. 15

    J. Diaz-Sanz, S. Robert, and C. Keller, “Parameters influencing run-off on vegetated urban soils: a case study in Marseilles, France,” Geoderma 376, 114455 (2020). https://doi.org/10.1016/j.geoderma.2020.114455

    Article  Google Scholar 

  16. 16

    E. Gonzalez-Sosa, I. Braud, J. Dehotin, L. Lassabatère, R. Angulo-Jaramillo, M. Lagouy, F. Branger, C. Jacqueminet, S. Kermadi, and K. Michel, “Impact of land use on the hydraulic properties of the topsoil in a small French catchment,” Hydrol. Process. 24 (17), 2382–2399 (2010). https://doi.org/10.1002/hyp.7640

    Article  Google Scholar 

  17. 17

    R. Haverkamp, S. Debionne, R. Angulo-Jaramillo, and D. de Condappa, “Soil properties and moisture movement in the unsaturated zone,” in The Handbook of Groundwater Engineering, Ed. by J. H. Cushman and D. M. Tartakovsky (CRC Press, Boca Raton, FL, 2016), pp. 167–208. https://doi.org/10.1201/9781315371801

    Book  Google Scholar 

  18. 18

    R. Haverkamp, P. J. Ross, K. R. J. Smettem, and J. Y. Parlange, “Three-dimensional analysis of infiltration from the disc infiltrometer: 2. Physically based infiltration equation,” Water Resour. Res. 30 (11), 2931–2935 (1994). https://doi.org/10.1029/94WR01788

    Article  Google Scholar 

  19. 19

    A. C. Hinnell, N. Lazarovitch, and A. W. Warrick, “Explicit infiltration function for boreholes under constant head conditions,” Water Resour. Res. 45 (10), (2009). https://doi.org/10.1029/2008WR007685

  20. 20

    L. Lassabatere, R. Angulo-Jaramillo, D. Goutaland, L. Letellier, J. P. Gaudet, T. Winiarski, and C. Delolme, “Effect of the settlement of sediments on water infiltration in two urban infiltration basins,” Geoderma 156 (3–4), 316–325 (2010). https://doi.org/10.1016/j.geoderma.2010.02.031

    Article  Google Scholar 

  21. 21

    L. Lassabatere, R. Angulo-Jaramillo, J. M. Soria-Ugalde, R. Cuenca, I. Braud, and R. Haverkamp, “Beerkan estimation of soil transfer parameters through infiltration experiments—BEST,” Soil Sci. Soc. Am. J. 70 (2), 521–532 (2006). https://doi.org/10.2136/sssaj2005.0026

    Article  Google Scholar 

  22. 22

    L. Lassabatere, R. Angulo-Jaramillo, J. M. Soria-Ugalde, J. Šimůnek, and R. Haverkamp, “Numerical evaluation of a set of analytical infiltration equations,” Water Resour. Res. 45 (12), (2009). https://doi.org/10.1029/2009WR007941

  23. 23

    L. Lassabatere, S. Di Prima, R. Angulo-Jaramillo, S. Keesstra, and D. Salesa, “Beerkan multi-runs for characterizing water infiltration and spatial variability of soil hydraulic properties across scales,” Hydrol. Sci. J. 64 (2), 165–178, (2019). https://doi.org/10.1080/02626667.2018.1560448

    Article  Google Scholar 

  24. 24

    N. Le Nouveau, H. Perrier, and E. Valla, “Ultra light cellular structures for rainwater storage: a new technical guideline in France,” in Proceedings of the 11th International Conference on Urban Drainage, August 31–September 5, 2008 (Edinburgh, 2008).

  25. 25

    L. Lichner, P. D. Hallett, Z. Drongová, H. Czachor, L. Kovacik, J. Mataix-Solera, and M. Homolák, “Algae influence the hydrophysical parameters of a sandy soil,” Catena 108, 58–68 (2013). https://doi.org/10.1016/j.catena.2012.02.016

    Article  Google Scholar 

  26. 26

    B. Minasny and A. B. McBratney, “Estimating the water retention shape parameter from sand and clay content,” Soil Sci. Soc. Am. J. 71 (4), 1105–1110 (2007). https://doi.org/10.2136/sssaj2006.0298N

    Article  Google Scholar 

  27. 27

    J. R. Philip, “The theory of infiltration: 4. Sorptivity and algebraic infiltration equations,” Soil Sci. 84 (3), 257–264 (1957). https://doi.org/10.1097/00010694-195709000-00010

    Article  Google Scholar 

  28. 28

    M. Rahmati, L. Weihermüller, J. Vanderborght, Y. A. Pachepsky, L. Mao, S. H. Sadeghi, et al., “Development and analysis of the Soil Water Infiltration Global database,” Earth Syst. Sci. Data 10 (3), 1237–1263 (2018). https://doi.org/10.5194/essd-10-1237-2018

    Article  Google Scholar 

  29. 29

    T. B. Ramos, M. C. Goncalves, J. C. Martins, M. T. van Genuchten, and F. P. Pires, “Estimation of soil hydraulic properties from numerical inversion of tension disk infiltrometer data,” Vadose Zone J. 5 (2), 684–696 (2006). https://doi.org/10.2136/vzj2005.0076

    Article  Google Scholar 

  30. 30

    W. D. Reynolds, “Measuring soil hydraulic properties using a cased borehole permeameter: steady flow analyses,” Vadose Zone J. 9, 637–652 (2010). https://doi.org/10.2136/vzj2009.0136

    Article  Google Scholar 

  31. 31

    W. D. Reynolds and D. E. Elrick, “Ponded infiltration from a single ring: I. Analysis of steady flow,” Soil Sci. Soc. Am. J. 54 (5), 1233–1241 (1990). https://doi.org/10.2136/sssaj1990.03615995005400050006x

    Article  Google Scholar 

  32. 32

    W. D. Reynolds and D. E. Elrick, “Measurement and characterization of soil hydraulic properties,” in Soil-Water-Solute Process Characterization: An Integrated Approach, Ed. by J. Álvarez-Benedí and R. Muñoz-Carpena (CRC Press, Boca Raton, FL, 2005), Ch. 6, pp. 197–252. https://doi.org/10.1017/S0014479705283060

  33. 33

    P. Shwetha and K. Prasanna, “Pedotransfer functions for the estimation of saturated hydraulic conductivity for some Indian sandy soils,” Eurasian Soil Sci. 51, 1042–1049 (2018). https://doi.org/10.1134/S1064229318090119

    Article  Google Scholar 

  34. 34

    J. Šimůnek, R. Angulo-Jaramillo, M. G. Schaap, J. P. Vandervaere and M. T. van Genuchten, “Using an inverse method to estimate the hydraulic properties of crusted soils from tension-disc infiltrometer data,” Geoderma 86, 61–81 (1998). https://doi.org/10.1016/S0016-7061(98)00035-4

    Article  Google Scholar 

  35. 35

    J. Šimůnek, M. T. van Genuchten, and M. Sejna, “Development and applications of the HYDRUS and STANMOD software packages and related codes,” Vadose Zone J. 7, 587–600 (2008). https://doi.org/10.2136/vzj2007.0077

    Article  Google Scholar 

  36. 36

    K. R. J. Smettem, J. Y. Parlange, P. J. Ross, and R. Haverkamp, “Three-dimensional analysis of infiltration from the disc infiltrometer: 1. A capillary-based theory,” Water Resour. Res. 30 (11), 2925–2929 (1994). https://doi.org/10.1029/94WR01787

  37. 37

    R. D. Stewart and M. R. Abou Najm, “A comprehensive model for single ring infiltration I: Initial water content and soil hydraulic properties,” Soil Sci. Soc. Am. J. 82 (3), 548–557 (2018).https://doi.org/10.2136/sssaj2017.09.0313

  38. 38

    R. D. Stewart and M. R. Abou Najm, “A comprehensive model for single ring infiltration, II: estimating field-saturated hydraulic conductivity,” Soil Sci. Soc. Am. J. 82 (3), 558–567 (2018). https://doi.org/10.2136/sssaj2017.09.0314

    Article  Google Scholar 

  39. 39

    M. T. van Genuchten, “A closed-form equation for predicting the hydraulic conductivity of unsaturated soils,” Soil Sci. Soc. Am. J. 44 (5), 892–898 (1980). https://doi.org/10.2136/sssaj1980.03615995004400050002x

    Article  Google Scholar 

  40. 40

    I. White and M. J. Sully, “Macroscopic and microscopic capillary length and time scales from field infiltration,” Water Resour. Res. 23 (8), 1514–1522 (1987). https://doi.org/10.1029/WR023i008p01514

    Article  Google Scholar 

  41. 41

    L. Wu, L. Pan, J. Mitchell, and B. Sanden, “Measuring saturated hydraulic conductivity using a generalized solution for single-ring infiltrometers,” Soil Sci. Soc. Am. J. 63 (4), 788–792 (1999). https://doi.org/10.2136/sssaj1999.634788x

    Article  Google Scholar 

  42. 42

    X. Xu, C. Lewis, W. Liu, J. D. Albertson, and G. Kiely, “Analysis of single-ring infiltrometer data for soil hydraulic properties estimation: comparison of BEST and Wu methods,” Agric. Water Manage. 107, 34–41 (2012). https://doi.org/10.1016/j.agwat.2012.01.004

    Article  Google Scholar 

  43. 43

    D. Yilmaz, S. Bouarafa, P. E. Peyneau, R. Angulo-Jaramillo, and L. Lassabatere, “Assessment of hydraulic properties of technosols using Beerkan and multiple tension disc infiltration methods,” Eur. J. Soil Sci. 70 (5), 1049–1062 (2019). https://doi.org/10.1111/ejss.12791

    Article  Google Scholar 

  44. 44

    D. Yilmaz, L. Lassabatere, R. Angulo-Jaramillo, D. Deneele, and M. Legret, “Hydrodynamic characterization of basic oxygen furnace slag through an adapted BEST method,” Vadose Zone J. 9 (1), 107–116 (2010). https://doi.org/10.2136/vzj2009.0039

    Article  Google Scholar 

  45. 45

    D. Yilmaz, L. Lassabatere, D. Deneele, R. Angulo-Jaramillo, and M. Legret, “Influence of carbonation on the microstructure and hydraulic properties of a basic oxygen furnace slag,” Vadose Zone J. 12 (2), (2013). https://doi.org/10.2136/vzj2012.0121

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to D. Yilmaz.

Ethics declarations

The author states that there are no conflicts of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yilmaz, D. Alternative α* Parameter Estimation for Simplified Beerkan Infiltration Method to Assess Soil Saturated Hydraulic Conductivity. Eurasian Soil Sc. 54, 1049–1058 (2021). https://doi.org/10.1134/S1064229321070140

Download citation

Keywords:

  • soil infiltration
  • BEST method
  • simplified Beerkan method
  • Gardner parameter α*