Skip to main content

Effect of Ca-Rich Granulated Oil Shale Ash Amendment on Leaching Properties of Peat Soil: Experimental and Field Study


The combustion of low-grade solid fuels such as oil shale generates huge amounts of solid wastes such as fly ash. Use of oil shale combustion ash in granulated form for liming and amending peat soil has been suggested as a feasible recycling opportunity. However, the effect of granulated oil shale ash application on the characteristics of soil moisture and mobility of potentially toxic elements has not been thoroughly studied. The aim of the work was to study the environmental safety of the granulated oil shale fly ash when applied at peat soil in post-harvested peatlands. The oil shale ash was granulated using Na-alginate gel. The pH, EC and mobility of selected elements such as Al, As, Ba, Ca, Cd, Cr, Cu, Hg, K, Mo, Ni, Pb and Zn in amended peat soil was followed by analyzing soil water samples from the field. During vegetation period from April 2016 to September 2016 the pH value of the soil water samples in areas amended with granulated oil shale ash increased from 3 up to 6. The concentration of essential nutrients as well as other beneficial trace elements increased in soil water samples. The concentrations of potentially toxic microelements Cd, Hg and Pb were below detection limits in all collected soil water leachates. Granulated oil shale ash did not increased the mobility of other potentially hazard elements in amended peat soil during the study.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.


  1. 1

    J. Adamson, N. Irha, K. Adamson, E. Steinnes, and U. Kirso, “Effect of oil shale ash application on leaching behavior of arable soils: an experimental study,” Oil Shale 27 (3), 250–257 (2010).

    Article  Google Scholar 

  2. 2

    M. Basu, M. Pande, P. B. S. Bhadoria, and S. C. Mahapatra, “Potential fly-ash utilization in agriculture: a global review,” Prog. Nat. Sci. 19 (10), 1173–1186 (2009).

    Article  Google Scholar 

  3. 3

    P. Bhattacharya, A. H. Welch, K. G. Stollenwerk, M. J. McLaughlin, J. Bundschuh, and G. Panaullah, “Arsenic in the environment: biology and chemistry,” Sci. Total Environ. 379 (2–3), 109–120 (2007).

    Article  Google Scholar 

  4. 4

    L. Bityukova, R. Mõtlep, and K. Kirsimäe, “Composition of pulverized firing and circulating fluidized-bed boiler oil shale ashes in Narva Thermal Power Plants, Estonia,” Oil Shale 27 (4), 339–353 (2010).

    Article  Google Scholar 

  5. 5

    I. Blinova, L. Bityukova, K. Kasemets, A. Ivask, A. Käkinen, I. Kurvet, O. Bondarenko, L. Kanarbik, M. Sihtmäe, V. Aruoja, H. Schvede, and A. Kahru, “Environmental hazard of oil shale combustion fly ash,” J. Hazard. Mater. 229–230, 192–200 (2012).

    Article  Google Scholar 

  6. 6

    E. Brännvall, M. Wolters, R. Sjöblom, and J. Kumpiene, “Elements availability in soil fertilized with pelletized fly ash and biosolid,” J. Environ. Manage. 159, 27–36 (2015).

    Article  Google Scholar 

  7. 7

    M. Chrysochoou and D. Dermatas, “Evaluation of ettringite and hydrocalumite formation for heavy metal immobilization: literature review and experimental study,” J. Hazard. Mater. 136 (1), 20–33 (2006).

    Article  Google Scholar 

  8. 8

    G. Cornelis, C. A. Johnson, T. van Gerven, and C. Vandecasteele, “Leaching mechanisms of oxyanionic metalloid and metal species in alkaline solid wastes. A review,” Appl. Geochem. 23, 955–976 (2008).

    Article  Google Scholar 

  9. 9

    T. El-Hasan, N. Abu-Jaber, and N. Abdelhadi, “Hazardous toxic elements mobility in burned oil shale ash, and attempts to attain short- and long-term solidification,” Oil Shale 36 (2), 226–249 (2019).

    Article  Google Scholar 

  10. 10

    EN (European Standard) 12457-2:2002: Characterization of Waste–Leaching–Compliance Test for Leaching of Granular Waste Materials and Sludges. One Stage Batch Test at a Liquid to Solid Ratio of 10l/kg for Materials with Particle Size Below 4 mm (without or with Size Reduction) (European Committee for Standardization, Brussels, 2002).

  11. 11

    N. Huotari, E. Tillman-Sutela, M. Moilanen, and R. Laiho, “Recycling of ash—For the good of the environment?” For. Ecol. Manage. 348, 226–240 (2015).

    Article  Google Scholar 

  12. 12

    J. Hytönen, “Effects of wood, peat and coal ash fertilization on Scots pine foliar nutrient concentrations and growth on afforested former agricultural peat soils,” Silva Fenn. 37 (2), 219–234 (2003).

    Article  Google Scholar 

  13. 13

    N. Irha, M. Uibu, J. Jefimova, L.-M. Raado, T. Hain, and R. Kuusik, “Leaching behavior of Estonian oil shale ash-based construction mortars,” Oil Shale 31 (4), 394–411 (2014).

    Article  Google Scholar 

  14. 14

    M. Izquierdo and X. Querol, “Leaching behavior of elements from coal combustion fly ash: An overview,” Int. J. Coal Geol. 94, 54–66 (2012).

    Article  Google Scholar 

  15. 15

    J. Jankowski, C. R. Ward, D. French, and S. Groves, “Mobility of trace elements from selected Australian fly ashes and its potential impact on aquatic ecosystems,” Fuel 85 (2), 243–256 (2006).

    Article  Google Scholar 

  16. 16

    K. Kikamägi, K. Ots, T. Kuznetsova, and A. Pototski, “The growth and nutrients status of conifers on ash-treated cutaway peatland,” Trees 28 (1), 53–64 (2014).

    Article  Google Scholar 

  17. 17

    K. Kirsimäe, “What shall we do with oil shale processing solid waste?” Oil Shale 32 (3), 201–203 (2015).

    Article  Google Scholar 

  18. 18

    K. Komonweeraket, B. Cetin, C. H. Benson, A. H. Aydilek, and T. B. Edil, “Leaching characteristics of toxic constituents from coal fly ash mixed soils under the influence of pH,” Waste Manage. 38, 174–184 (2015).

    Article  Google Scholar 

  19. 19

    R. Kuusik, M. Uibo, and K. Kirsimäe, “Characterization of oil shale ashes formed at industrial-scale CFBC boilers” Oil Shale 22 (4), 407–420 (2005).

    Google Scholar 

  20. 20

    J. Kyziol, I. Twardowska, and Ph. Schmitt-Kopplin, “The role of humic substances in chromium sorption onto natural organic matter (peat),” Chemosphere 63 (11), 1974–1982 (2006).

    Article  Google Scholar 

  21. 21

    R. Kõlli, E. Asi, V. Apuhtin, K. Kauer, and L. W. Szajdak, “Chemical properties of surface peat on forest land in Estonia,” Mires Peat 6, 1–12 (2010).

    Google Scholar 

  22. 22

    S. Labidi, S. Firmin, A. Verdin, G. Bidar, F. Laruelle, F. Douay, P. Shirali, J. Fontaine, and A. L.-H. Sahraoui, “Nature of fly ash amendments differently influences oxidative stress alleviation in four forest tree species and metal trace element phytostabilization in aged contaminated soil: a long-term field experiment,” Ecotoxicol. Environ. Saf. 138, 190–198 (2017).

    Article  Google Scholar 

  23. 23

    K. Leben, R. Mõtlep, P. Paaver, A. Konist, T. Pihu, P. Paiste, I. Heinmaa, G. Nurk, E. J. Anthony, and K. Kirsimäe, “Long-term mineral transformation of Ca-rich oil shale ash waste,” Sci. Total. Environ. 658, 1404–1415. (2019).

    Article  Google Scholar 

  24. 24

    M. Liira, K. Kirsimäe, R. Kuusik, and R. Mõtlep, “Transformation of calcareous oil-shale circulating fluidized-bed combustion boiler ashes under wet conditions,” Fuel 88 (4), 712–718 (2009).

    Article  Google Scholar 

  25. 25

    D. N. Lipatov, A. I. Shcheglov, D. V. Manakhov, M. M. Karpukhin, Yu. A. Zavgorodnyaya, and O. B. Tsvetnova, “Distributions of heavy metals and benzo[a]pyrene in oligotrophic peat soils and peat gleyzems of Northeastern Sakhalin,” Eurasian Soil Sci. 51, 518–527 (2018).

    Article  Google Scholar 

  26. 26

    T. Matsi and V. Z. Keramidas, “Fly ash application on two acid soils and its effect on soil salinity, pH, B, P and on ryegrass growth and composition,” Environ. Pollut. 104 (1), 107–112 (1999).

    Article  Google Scholar 

  27. 27

    Government Decree on the Assessment of Soil Contamination and Remediation Needs (214/2007, March 1, 2007) (Ministry of the Environment of Finland, Helsinki, 2007).

  28. 28

    S. C. B. Myneni, S. J. Traina, and T. J. Logan, “Ettringite solubility and geochemistry of the Ca(OH)2–Al2(SO4)3–H2O system at 1 atm pressure and 298 K,” Chem. Geol. 148 (1–2), 1–19 (1998).

    Article  Google Scholar 

  29. 29

    R. Mõtlep, T. Sild, E. Puura, and K. Kirsimäe, “Composition, diagenetic transformation and alkalinity potential of oil shale ash sediments,” J. Hazard. Mater. 184 (1–3), 567–573 (2010).

    Article  Google Scholar 

  30. 30

    E. Oburger, A. Jäger, A. Pasch, A. Dellantonio, K. Stampfer, and W. W. Wenzel, “Environmental impact assessment of wood ash utilization in forest road construction and maintenance—A field study,” Sci. Total Environ. 544, 711–721 (2016).

    Article  Google Scholar 

  31. 31

    H. Orru and M. Orru, “Sources and distribution of trace elements in Estonian peat,” Global Planet. Change 53 (4), 249–258 (2006).

    Article  Google Scholar 

  32. 32

    M. Orru, K. Ots, and H. Orru, “Re-vegetation processes in cutaway peat production fields in Estonia in relation to peat quality and water regime,” Environ. Monit. Assess. 188 (12), 655 (2016).

    Article  Google Scholar 

  33. 33

    A. Ots, “Oil shale combustion technology,” Oil Shale 21 (2), 149-160 (2004).

    Google Scholar 

  34. 34

    K. Ots, M. Tilk, and K. Aguraijuja, “The effect of oil shale ash and mixtures of wood ash and oil shale ash on the above- and belowground biomass formation of Silver birch and Scots pine seedlings on a cutaway peatland,” Ecol. Eng. 108, 296–306 (2017).

    Article  Google Scholar 

  35. 35

    V. C. Pandey and N. Singh, “Impact of fly ash incorporation in soil system,” Agric. Ecosyst. Environ. 136 (1–2), 16–27 (2010).

    Article  Google Scholar 

  36. 36

    R. B. Perkins and C. D. Palmer, “Solubility of ettringite (Ca6[Al(OH)6]2(SO4)3·26H2O) at 5–75°C,” Geochim. Cosmochim. Acta 63 (13–14), 1969–1980 (1999).

    Article  Google Scholar 

  37. 37

    V. Petersell, M. Karimov, M. Shtokalenko, and K. Täht, Geochemical Atlas of Estonian Agricultural Soil, Ed. by V. Klein (Eesti Geoloogiakeskus, Tallinn, 2017) [in Estonian]. 331323/291375/page.

    Google Scholar 

  38. 38

    S. Piirainen, T. Domisch, M. Moilanen, and M. Nieminen, “Long-term effects of ash fertilization on runoff water quality from drained peatland forests,” For. Ecol. Manage. 287, 53–66 (2013).

    Article  Google Scholar 

  39. 39

    R. M. Pitman, “Wood ash use in forestry—a review of the environmental impacts,” Forestry 79 (5), 563–588 (2006).

    Article  Google Scholar 

  40. 40

    L. C. Ram and R. E. Masto, “Fly ash for soil amelioration: a review on the influence of ash blending with inorganic and organic amendments,” Earth-Sci. Rev. 128, 52–74 (2014).

    Article  Google Scholar 

  41. 41

    R. Ramst, M. Orru, and L. Halliste, Revision of Estonian Cutaway Peatlands, The First Stage: Harju, Rapla and Lääne Counties (Eesti Geoloogiakeskus, Tallinn, 2005) [in Estonian]. 1_etapp.pdf.

  42. 42

    P. Ravenscroft, H. Brammer, and K. Richards, Arsenic Pollution: a Global Synthesis (Wiley-Blackwell, Oxford, 2009).

  43. 43

    C. Reimann, U. Siewers, T. Tarvainen, L. Bityukova, J. Eriksson, A. Gilucis, V. Gregorauskiene, V. Lukashev, N. N. Matinian, and A. Pasieczna, “Baltic soil survey: total concentrations of major and selected trace elements in arable soils from 10 countries around the Baltic Sea,” Sci. Total Environ. 257 (2–3), 155–170 (2000).

    Article  Google Scholar 

  44. 44

    J. Reinik, N. Irha, A. Koroljova, and T. Meriste, “Use of oil shale ash in road construction: results of follow-up environmental monitoring,” Environ. Monit. Assess. 190 (2), 59 (2018).

    Article  Google Scholar 

  45. 45

    J. Reinik, N. Irha, E. Steinnes, G. Urb, J. Jefimova, and E. Piirisalu, “Release of 22 elements from bottom and fly ash samples of oil shale fueled PF and CFB boilers by a two-cycle standard leaching test,” Fuel Process. Technol. 124, 147–154 (2014).

    Article  Google Scholar 

  46. 46

    J. Reinik, N. Irha, E. Steinnes, G. Urb, J. Jefimova, E. Piirisalu, and J. Loosaar, “Changes in trace element contents in ashes of oil shale fueled PF and CFB boilers during operation,” Fuel Process. Technol. 115, 174–181 (2013).

    Article  Google Scholar 

  47. 47

    RT I 2019. Limit Values for Groundwater Quality for Hazardous Substances (Regulation No. 39 of September 4, 2019, RT I 31 (Tallinn, 2019) [in Estonian]. https://

  48. 48

    H. Schvede, L. Bityukova, and L.-E. Vinne, “Arsenic behavior in soil of North-eastern Estonia: preliminary results”, in Proceedings of the 1st Students International Geological Conference, Krakow, Poland, April 16–19, 2010, Abstracts of Papers (Geological Society of Poland, Krakow, 2010), pp. 41–42.

  49. 49

    S. M. Shaheen, P. S. Hooda, and C. D. Tsadilas, “Opportunities and challenges in the use of coal fly ash for soil improvements—A review,” J. Environ. Manage. 145, 249–267 (2014).

    Article  Google Scholar 

  50. 50

    S. K. Sharma and N. Kalra, “Effect of fly ash incorporation on soil properties and productivity of crops: a review,” J. Sci. Ind. Res. 65 (5), 383–390 (2006).

    Google Scholar 

  51. 51

    J. Skousen, J. E. Yang, J.-S. Lee, and P. Ziemkiewicz, “Review of fly ash as a soil amendment,” Geosyst. Eng. 16 (3), 249–256 (2013).

    Article  Google Scholar 

  52. 52

    T. Terasmaa and J. Pikk, “Liming with powdered oil-shale ash in a heavily damaged forest ecosystem. 2. The effect on forest condition in a pine stand,” Proc. Est. Acad. Sci., Ecol. 5 (3–4), 77–84 (1995).

    Google Scholar 

  53. 53

    G. Tóth, T. Hermann, M. R. Da Silva, and L. Montanarella, “Heavy metals in agricultural soils of the European Union with implications for food safety,” Environ. Int. 88, 299–309 (2016).

    Article  Google Scholar 

  54. 54

    N. L. Ukwattage, P. G. Ranjith, and M. Bouazza, “The use of coal combustion fly ash as a soil amendment in agricultural lands (with comments on its potential to improve food security and sequester carbon),” Fuel 109, 400–408 (2013).

    Article  Google Scholar 

  55. 55

    K. Väänänen, M. T. Leppänen, X. P. Chen, and J. Akkanen, “Metal bioavailability in ecological risk assessment of freshwater ecosystems: from science to environmental management,” Ecotoxicol. Environ. Saf. 147, 430–446 (2017).

    Article  Google Scholar 

  56. 56

    Y. Xu, P. Sun, S. Yao, Z. Liu, X. Tian, F. Li, and J. Zhang, “Progress in exploration, development and utilization of oil shale in China,” Oil Shale 36 (2), 285–304 (2019).

    Article  Google Scholar 

  57. 57

    I. A. M. Yunusa, P. Loganathan, S. P. Nissanka, V. Manoharan, M. D. Burchett, C. G. Skilbeck, and D. Eamus, “Application of coal fly ash in agriculture: a strategic perspective,” Crit. Rev. Environ. Sci. Technol. 42 (6), 559–600 (2012).

    Article  Google Scholar 

Download references


This work was supported by Environmental Investment Centre, SA Keskkonnainvesteeringute Keskus (KIK) Granuleeritud põlevkivi keevkihtkatlatuha kasutamine mullaparendajana—leostusuuring. Use of granulated fluidized bed combustion oil shale ash as soil amendment—leaching study, by the Eesti Energia Power Plants AS [Grant no. 9529].

Author information



Corresponding author

Correspondence to N. Irha.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Reinik, J., Irha, N. & Ots, K. Effect of Ca-Rich Granulated Oil Shale Ash Amendment on Leaching Properties of Peat Soil: Experimental and Field Study. Eurasian Soil Sc. 54, 1097–1106 (2021).

Download citation


  • granulated fly ash
  • soil water
  • toxic microelements
  • lysimetric waters