Skip to main content

Temperature Sensitivity of СO2 Efflux from the Surface of Palsa Peatlands in Northwestern Siberia as Assessed by Transplantation Method

Abstract

Peatland soils in permafrost area are among the major components of global carbon cycle. In the case of predicted climate change, they may act as a significant source of greenhouse gases efflux. A four-year transplantation experiment (transplantation of soil cores of 20 cm in height and 10 cm in diameter to other natural positions) with the peat horizon was arranged to assess the temperature sensitivity of CO2 efflux from palsa peatlands in the north of Western Siberia. The rise in temperature by 7°С caused a positive feedback (30–70%) of CO2 efflux (measured by the closed chamber method) from transplanted soils as compared with the control. Temperature dependence of CO2 efflux from transplanted soils had the highest value (R2 = 0.8) in the first two years as a result of maximum contrast of temperature conditions between sites and decreased in the next two years. On the contrary, the temperature sensitivity of CO2 efflux from transplanted soils showed a high value during most of observations (Q10 = 3–6) thus indicating the increased rate of organic matter mineralization in peat soils of permafrost area for a long (four years) period. Our results might be useful for calibration of regional carbon cycle data sets that consider the contribution of organic permafrost-affected soils.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. 1

    A. A. Bobrik, O. Yu. Goncharova, G. V. Matyshak, I. M. Ryzhova, and M. I. Makarov, “The effect of geocryological conditions and soil properties on the spatial variation in the CO2 emission from flat-topped peat mounds in the isolated permafrost zone of Western Siberia,” Eurasian Soil Sci. 49, 1355–1365 (2016). https://doi.org/10.1134/S1064229316100045

    Article  Google Scholar 

  2. 2

    V. D. Vasil’evskaya, V. V. Ivanov, and L. G. Bogatyrev, Soils of the North of Western Siberia (Moscow State Univ., Moscow, 1986) [in Russian].

    Google Scholar 

  3. 3

    O. Yu. Goncharova, G. V. Matyshak, A. A. Bobrik, and N. G. Moskalenko, “Carbon dioxide generation by northern taiga soils of Western Siberia (Nadym station),” Kriosfera Zemli 18 (2), 66–71 (2014).

    Google Scholar 

  4. 4

    L. L. Shishov, V. D. Tonkonogov, I. I. Lebedeva, and M. I. Gerasimova, Classification and Diagnostic System of Russian Soils (Oikumena, Smolensk, 2004) [in Russian].

    Google Scholar 

  5. 5

    I. N. Kurganova, V. O. Lopes de Gerenyu, J. F. Gallardo Lancho, and C. T. Oehm, “Evaluation of the rates of soil organic matter mineralization in forest ecosystems of temperate continental, Mediterranean, and tropical monsoon climates,” Eurasian Soil Sci. 45, 68–79 (2012).

    Article  Google Scholar 

  6. 6

    Landscapes of Permafrost Zone of the West Siberian Oil-and-Gas Field, Ed. by E. S. Mel’nikov (Nauka, Novosibirsk, 1983) [in Russian].

    Google Scholar 

  7. 7

    G. V. Matyshak, L. G. Bogatyrev, O. Yu. Goncharova, and A. A. Bobrik, “Specific features of the development of soils of hydromorphic ecosystems in the northern taiga of Western Siberia under conditions of cryogenesis,” Eurasian Soil Sci. 50, 1115–1124 (2017).

    Article  Google Scholar 

  8. 8

    A. V. Naumov, Soil Respiration: Components, Ecological Functions, and Geographical Regularities (Siberian Branch, Russian Academy of Sciences, Novosibirsk, 2009) [in Russian].

  9. 9

    A. V. Smagin, Gaseous Phase of Soils (Moscow State Univ., Moscow, 2005) [in Russian].

    Google Scholar 

  10. 10

    M. O. Tarkhov, G. V. Matyshak, I. M. Ryzhova, O. Yu. Goncharova, A. A. Bobrik, D. G. Petrov, and N. M. Petrzhik, “Temperature sensitivity of soil respiration in palsa peatlands of the north of Western Siberia,” Eurasian Soil Sci. 52, 945–953 (2019).

    Article  Google Scholar 

  11. 11

    Theory and Practice of the Chemical Analysis of Soils, Ed. by L. A. Vorob’eva (GEOS, Moscow, 2006) [in Russian].

    Google Scholar 

  12. 12

    E. L. Aronson and S. G. McNulty, “Appropriate experimental ecosystem warming methods by ecosystem, objective, and practicality,” Agric. For. Meteorol. 149, 1791–1799 (2009).

    Article  Google Scholar 

  13. 13

    A. Bani, L. Borruso, F. Fornasier, S. Pioli, C. Wellstein, and L. Brusetti, Microbial decomposer dynamics: diversity and functionality investigated through a transplantation experiment in boreal forests,” Microb. Ecol. 76 (4), 1030–1040 (2018). http://dx.doi.org/.org/10.1007/s00248-018-1181-5

    Article  Google Scholar 

  14. 14

    H. Chen and H.-Q. Tian, “Does a general temperature-dependent Q10 model of soil respiration exist at biome and global scale?” J. Integr. Plant Biol. 47, 1288–1302 (2005).

    Article  Google Scholar 

  15. 15

    E. A. Davidson and I. A. Janssens, “Temperature sensitivity of soil carbon decomposition and feedbacks to climate change,” Nature 440, 165–173 (2006).

    Article  Google Scholar 

  16. 16

    E. S. Euskirchen, C. W. Edgar, M. R. Turetsky, M. P. Waldrop, and J. W. Harden, “Differential response of carbon fluxes to climate in three peatland ecosystems that vary in the presence and stability of permafrost,” J. Geophys. Res.: Biogeosci. 119, 1576–1595 (2014).

    Article  Google Scholar 

  17. 17

    Soil Organic Carbon: The Hidden Potential (UN Food and Agriculture Organization, Rome, 2017).

  18. 18

    S. Hamdi, F. Moyano, S. Sall, M. Bernoux, and T. Chevallier, “Synthesis analysis of the temperature sensitivity of soil respiration from laboratory studies in relation to incubation methods and soil conditions,” Soil Biol. Biochem. 58, 115–126 (2013).

    Article  Google Scholar 

  19. 19

    P. Hedenec, V. Jilkova, Q. Lin, et al., “Microbial communities in local and transplanted soils along a latitudinal gradient,” Catena 173, 456–464 (2019).

    Article  Google Scholar 

  20. 20

    E. Hilasvuori, A. Akujarvi, H. Fritze, et al., “Temperature sensitivity of decomposition in a peat profile,” Soil Biol. Biochem. 67, 47–54 (2013).

    Article  Google Scholar 

  21. 21

    S. E. Hobbie and F. Stuart Chapin, “The response of tundra plant biomass, aboveground production, nitrogen, and CO2 flux to experimental warming,” Ecology 79, 1526–1544 (1998).

    Google Scholar 

  22. 22

    G. Hugelius, J. Strauss, S. Zubrzycki, et al., “Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps,” Biogeosciences 11, 6573–6593 (2014).

    Article  Google Scholar 

  23. 23

    M. U. F. Kirschbaum, “The temperature dependence of organic matter decomposition—still a topic of debate,” Soil Biol. Biochem. 38, 2510–2518 (2006).

    Article  Google Scholar 

  24. 24

    M. U. F. Kirschbaum, “The temperature dependence of soil organic matter decomposition and the effect of global warming on soil organic C storage,” Soil Biol. Biochem. 27, 753–760 (1995).

    Article  Google Scholar 

  25. 25

    A. O. Landva and P. E. Pheeney, “Peat fabric and structure,” Can. Geotech. J. 17, 416–435 (1980).

    Article  Google Scholar 

  26. 26

    A. Lazzaro, A. Gauer, and J. Zeyer, “Field-scale transplantation experiment to investigate structures of soil bacterial communities at pioneering sites,” Appl. Environ. Microbiol. 77, 8241–8248 (2011).

    Article  Google Scholar 

  27. 27

    S. O. Link, J. L. Smith, J. J. Halvorson, and H. Bolton, “A reciprocal transplant experiment within a climatic gradient in a semiarid shrub-steppe ecosystem: effects on bunchgrass growth and reproduction, soil carbon and soil nitrogen,” Global Change Biol. 9, 1097–1105 (2003).

    Article  Google Scholar 

  28. 28

    J. Lloyd and J. A. Taylor, “On the temperature dependence of soil respiration,” Funct. Ecol. 8, 315–323 (1994).

    Article  Google Scholar 

  29. 29

    S. M. Natali, E. A. G. Schuur, E. E. Webb, C. E. Hicks Pries, and K. G. Crummer, “Permafrost degradation stimulates carbon loss from experimentally warmed tundra,” Ecology 95, 602–608 (2014).

    Article  Google Scholar 

  30. 30

    J. Puissant, R. T. E. Mills, B. J. M. Robroek, et al., “Climate change effects on the stability and chemistry of soil organic carbon pools in a subalpine grassland,” Biogeochemistry 132, 123–139 (2017).

    Article  Google Scholar 

  31. 31

    N. R. Ravn, B. Elberling, and A. Michelsen, “Arctic soil carbon turnover controlled by experimental snow addition, summer warming and shrub removal,” Soil Biol. Biochem. 142, 107698 (2020). https://doi.org/10.1016/j.soilbio.2019.107698

    Article  Google Scholar 

  32. 32

    Ph. R. Semenchuk, E. J. Krab, M. Hedenström, C. A. Phillips, F. J. Ancin-Murguzur, and E. J. Cooper, “Soil organic carbon depletion and degradation in surface soil after long-term non-growing season warming in High Arctic Svalbard,” Sci. Total Environ. 646, 158–167 (2019).

    Article  Google Scholar 

  33. 33

    C. A. Sierra, “Temperature sensitivity of organic matter decomposition in the Arrhenius equation: some theoretical considerations,” Biogeochemistry 108, 1–15 (2012).

    Article  Google Scholar 

  34. 34

    S. Sjögersten and P. A. Wookey, “Climatic and resource quality controls on soil respiration across a forest–tundra ecotone in Swedish Lapland,” Soil Biol. Biochem. 34, 1633–1646 (2002).

    Article  Google Scholar 

  35. 35

    B. Sun, F. Wang, Y. Jiang, Y. Li, Z. Dong, Z. Li, and X.-X. Zhang, “A long-term field experiment of soil transplantation demonstrating the role of contemporary geographic separation in shaping soil microbial community structure,” Ecol. Evol. 4 (7), 1073–1087 (2014).

    Article  Google Scholar 

  36. 36

    Ch. Tarnocai, J. G. Canadell, E. A. G. Schuur, P. Kuhry, G. Mazhitova, and S. A. Zimov, “Soil organic carbon pools in the northern circumpolar permafrost region,” Global Biogeochem. Cycles 23 (2), GB2023 (2009). http://dx.doi.org/ 610.1029/2008GB003327

    Article  Google Scholar 

  37. 37

    S. Thiessen, G. Gleixner, T. Wutzler, and M. Reichstein, “Both priming and temperature sensitivity of soil organic matter decomposition depend on microbial biomass—An incubation study,” Soil Biol. Biochem. 57, 739–748 (2013).

    Article  Google Scholar 

  38. 38

    S. L. Tremblay, L. D’Orangeville, M.-C. Lambert, and D. Houle, “Transplanting boreal soils to a warmer region increases soil heterotrophic respiration as well as its temperature sensitivity,” Soil Biol. Biochem. 116, 203–212 (2018).

    Article  Google Scholar 

  39. 39

    M. Tuomi, P. Vanhala, K. Karhu, H. Fritze, and J. Liski, “Heterotrophic soil respiration—comparison of different models describing its temperature dependence,” Ecol. Model. 211, 182–190 (2008).

    Article  Google Scholar 

  40. 40

    P. Vanhala, K. Karhu, M. Tuomi, K. Björklöf, H. Fritze, H. Hyvärinen, and J. Liski, “Transplantation of organic surface horizons of boreal soils into warmer regions alters microbiology but not the temperature sensitivity of decomposition,” Global Change Biol. 17, 538–550 (2011).

    Article  Google Scholar 

  41. 41

    C. Voigt and C. C. Treat, “Ecosystem carbon response of an Arctic peatland to simulated permafrost thaw,” Global Change Biol. 25, 1746–1764 (2019).

    Article  Google Scholar 

  42. 42

    M. P. Waldrop and M. K. Firestone, “Response of microbial community composition and function to soil climate change,” Microb. Ecol. 52, 716–724 (2006).

    Article  Google Scholar 

  43. 43

    K. Xue, et al., “Tundra soil carbon is vulnerable to rapid microbial decomposition under climate warming,” Nat. Clim. Change 6, 595–600 (2016).

    Article  Google Scholar 

  44. 44

    Z. C. Yu, “Northern peatland carbon stocks and dynamics: a review,” Biogeosciences 9, 4071–4085 (2012).

    Article  Google Scholar 

  45. 45

    Zhao M., Sun B., Wu L., et al., “Dissimilar responses of fungal and bacterial communities to soil transplantation simulating abrupt climate changes,” Mol. Ecol. 28, 1842–1856 (2019).

    Article  Google Scholar 

Download references

Funding

This study was supported by the Russian Foundation for Basic Research (project no. 18-04-0952a) and by the Interdisciplinary Scientific and Educational School of Lomonosov Moscow State University “The Future of the Planet and Global Environmental Changes.”

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. O. Tarkhov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Klyueva

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Matyshak, G.V., Tarkhov, M.O., Ryzhova, I.M. et al. Temperature Sensitivity of СO2 Efflux from the Surface of Palsa Peatlands in Northwestern Siberia as Assessed by Transplantation Method. Eurasian Soil Sc. 54, 1028–1037 (2021). https://doi.org/10.1134/S1064229321070103

Download citation

Keywords:

  • peat
  • permafrost
  • climate change
  • Q 10
  • soil respiration