Skip to main content

Responses of Soil Respiration to Biotic and Abiotic Drivers in a Temperate Cropland

Abstract

To investigate the temporal dynamics of CO2 efflux from the soil surface in a temperate cropland and to quantify the effects of soil temperature, soil water content, N fertilization and plant growth on soil carbon dioxide efflux (Rs) field and lab experiments were performed. The field experiment was conducted in a cropland site with a conventional farming system in Central Hungary. The temporal changes of Rs were estimated using a closed chamber IRGA system about bi-weekly/monthly between November 2017–November 2019 in 10 positions. The measured average soil CO2 efflux values ranged from 0.06 ± 0.007 to 7.04 ± 0.44 µmol CO2 m–2 s–1 Soil respiration model including soil temperature (Ts), soil water content (SWC) and the incorporation of VIgreen (plant growth and functioning) gave a higher goodness-of-fit value (r2 = 0.54) than the simple temperature response. According to our field results, different variables including Ts, SWC and VIgreen play a principal role in the carbon cycle of the investigated cropland. We further investigated the effects of the main drivers in a laboratory experiment with the same soil. Closed chamber technique was used for measuring the emission of carbon dioxide by a Picarro G1101-i gas analyzer. We also introduced a fertilization experiment: three different N treatments were applied (N0, N75 and N150) with different levels of soil water content on the soil planted with maize and bare soil. According to our laboratory results, the cumulative CO2 efflux from soil was found to have a positive correlation with plant growth and with N fertilizer rate: as higher plant biomass and more N added, more CO2 was emitted, whereas, the cumulative emissions values from planted soil were around two times higher than in bare soil in all treatments. Significant positive correlations were found between CO2 efflux and SWC indicating that the soil water content was the main factor limiting the rate of the CO2 emission from soil in both planted and bare soil, in which the cumulative CO2 efflux was increased with the increase in soil water content, and it was almost three times higher in planted soils at higher soil moisture level than in the bare soil. We can conclude that the effects of plant presence and soil moisture on soil respiration had similar magnitude; however, the effect of N addition was small.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. 1

    R. Z. Abramoff and A. C. Finzi, “Are above- and below-ground phenology in sync?” New Phytol. 205 (3), 1054–1061 (2015). https://doi.org/10.1111/nph.13111

    Article  Google Scholar 

  2. 2

    M. M. Al-Kaisi, M. L. Kruse, and J. E. Sawyer, “Effect of nitrogen fertilizer application on growing season soil carbon dioxide emission in a corn-soybean rotation,” J. Environ. Qual. 37 (2), 325–332 (2008). https://doi.org/10.2134/jeq2007.0240

    Article  Google Scholar 

  3. 3

    A. S. Allen and W. H. Schlesinger, “Nutrient limitations to soil microbial biomass and activity in loblolly pine forests,” Soil Biol. Biochem. 36 (4), 581–589 (2004).

    Article  Google Scholar 

  4. 4

    M. Bahn, M. Rodeghiero, M. Anderson-Dunn, S. Dore, C. Gimeno, M. Drösler, M. Williams, C. Ammann, F. Berninger, C. Flechard, S. Jones, M. Balzarolo, S. Kumar, C. Newesely, T. Priwitzer, et al., “Soil respiration in European grasslands in relation to climate and assimilate supply,” Ecosystems 11 (8), 1352–1367 (2008). https://doi.org/10.1007/s10021-008-9198-0

    Article  Google Scholar 

  5. 5

    J. Balogh, S. Fóti, M. Papp, K. Pintér, and Z. Nagy, “Separating the effects of temperature and carbon allocation on the diel pattern of soil respiration in the different phenological stages in dry grasslands,” PLoS One 14 (10), 1–19 (2019). https://doi.org/10.1371/journal.pone.0223247

    Article  Google Scholar 

  6. 6

    J. Balogh, M. Papp, K. Pintér, S. Fóti, K. Posta, W. Eugster, and Z. Nagy, “Autotrophic component of soil respiration is repressed by drought more than the heterotrophic one in dry grasslands,” Biogeosciences 13 (18), 5171–5182 (2016). https://doi.org/10.5194/bg-13-5171-2016

    Article  Google Scholar 

  7. 7

    J. Balogh, K. Pintér, S. Fóti, D. Cserhalmi, M. Papp, and Z. Nagy, “Dependence of soil respiration on soil moisture, clay content, soil organic matter, and CO2 uptake in dry grasslands,” Soil Biol. Biochem. 43 (5), 1006–1013 (2011). https://doi.org/10.1016/j.soilbio.2011.01.017

    Article  Google Scholar 

  8. 8

    F. Bao, G. Zhou, F. Wang, and X. Sui, “Partitioning soil respiration in a temperate desert steppe in Inner Mongolia using exponential regression method,” Soil Biol. Biochem. 42 (12), 2339–2341 (2010). https://doi.org/10.1016/j.soilbio.2010.08.033

    Article  Google Scholar 

  9. 9

    X. Bao, X. Zhu, X. Chang, S. Wang, B. Xu, C. Luo, Z. Zhang, Q. Wang, Y. Rui, and X. Cui, “Effects of soil temperature and moisture on soil respiration on the Tibetan plateau,” PLoS One 11 (10), e0165212 (2016).

    Article  Google Scholar 

  10. 10

    R. D. Bardgett, W. D. Bowman, R. Kaufmann, and S. K. Schmidt, “A temporal approach to linking aboveground and belowground ecology,” Trends Ecol. Evol. 20 (11), 634–641 (2005). https://doi.org/10.1016/j.tree.2005.08.005

    Article  Google Scholar 

  11. 11

    B. Bond-Lamberty, C. Wang, and S. T. Gower, “A global relationship between the heterotrophic and autotrophic components of soil respiration?” Global Change Biol. 10 (10), 1756–1766 (2004). https://doi.org/10.1111/j.1365-2486.2004.00816.x

    Article  Google Scholar 

  12. 12

    M. Bonkowski, “Protozoa and plant growth: the microbial loop in soil revisited,” New Phytol. 162 (3), 617–631 (2004).

    Article  Google Scholar 

  13. 13

    M. Bonkowski, W. Cheng, B. S. Griffiths, J. Alphei, and S. Scheu, “Microbial-faunal interactions in the rhizosphere and effects on plant growth,” Eur. J. Soil Biol. 36 (3–4), 135–147 (2000).

    Article  Google Scholar 

  14. 14

    N. Brüggemann, A. Gessler, Z. Kayler, S.G. Keel, F. Badeck, M. Barthel, P. Boeckx, N. Buchmann, E. Brugnoli, J. Esperschütz, O. Gavrichkova, J. Ghashghaie, N. Gomez-Casanovas, C. Keitel, A. Knohl, et al., “Carbon allocation and carbon isotope fluxes in the plant-soil-atmosphere continuum: a review,” Biogeosciences 8 (11), 3457–3489 (2011). https://doi.org/10.5194/bg-8-3457-2011

    Article  Google Scholar 

  15. 15

    D. L. Burton and E. G. Beauchamp, “Profile nitrous oxide and carbon dioxide concentrations in a soil subject to freezing,” Soil Sci. Soc. Am. J. 58 (1), 115–122 (1994).

    Article  Google Scholar 

  16. 16

    M. S. Carbone, C. J. Still, A. R. Ambrose, T. E. Dawson, A. P. Williams, C. M. Boot, S. M. Schaeffer, and J. P. Schimel, “Seasonal and episodic moisture controls on plant and microbial contributions to soil respiration,” Oecologia 167, 265–278 (2011). https://doi.org/10.1007/s00442-011-1975-3

    Article  Google Scholar 

  17. 17

    C.-T. Chang, D. Sperlich, S. Sabaté, E. Sánchez-Costa, M. Cotillas, J. M. Espelta, and C. Gracia, “Mitigating the stress of drought on soil respiration by selective thinning: contrasting effects of drought on soil respiration of two oak species in a Mediterranean forest,” Forests 7 (11), 263 (2016).

    Article  Google Scholar 

  18. 18

    Q. Chen, D. U. Hooper, and S. Lin, “Shifts in species composition constrain restoration of overgrazed grassland using nitrogen fertilization in Inner Mongolian steppe, China,” PLoS One 6 (3), e16909 (2011).

    Article  Google Scholar 

  19. 19

    S. Chen, J. Zou, Z. Hu, H. Chen, and Y. Lu, “Global annual soil respiration in relation to climate, soil properties and vegetation characteristics: Summary of available data,” Agric. For. Meteorol. 198, 335–346 (2014). https://doi.org/10.1016/j.agrformet.2014.08.020

    Article  Google Scholar 

  20. 20

    Z. Chen, Y. Xu, J. Fan, H. Yu, and W. Ding, “Soil autotrophic and heterotrophic respiration in response to different N fertilization and environmental conditions from a cropland in Northeast China,” Soil Biol. Biochem. 110, 103–115 (2017). https://doi.org/10.1016/j.soilbio.2017.03.011

    Article  Google Scholar 

  21. 21

    J. Curiel Yuste, D.D. Baldocchi, A. Gershenson, A. Goldstein, L. Misson, and S. Wong, “Microbial soil respiration and its dependency on carbon inputs, soil temperature and moisture,” Global Change Biol. 13 (9), 2018–2035 (2007). https://doi.org/10.1111/j.1365-2486.2007.01415.x

    Article  Google Scholar 

  22. 22

    E. Daly, A. C. Oishi, A. Porporato, and G. G. Katul, “A stochastic model for daily subsurface CO2 concentration and related soil respiration,” Adv. Water Resour. 31 (7), 987–994 (2008). https://doi.org/10.1016/j.advwatres.2008.04.001

    Article  Google Scholar 

  23. 23

    E. A. Davidson, E. Belk, and R. D. Boone, “Soil water content and temperature as independent or confounded factors controlling soil respiration in a temperate mixed hardwood forest,” Global Change Biol. 4 (2), 217–227 (1998). https://doi.org/10.1046/j.1365-2486.1998.00128.x

    Article  Google Scholar 

  24. 24

    E. A. Davidson, I. A. Janssens, and Y. Lou, “On the variability of respiration in terrestrial ecosystems: moving beyond Q 10,” Global Change Biol. 12 (2), 154–164 (2006). https://doi.org/10.1111/j.1365-2486.2005.01065.x

    Article  Google Scholar 

  25. 25

    E. A. Davidson, S. Samanta, S. S. Caramori, and K. Savage, “The Dual Arrhenius and Michaelis–Menten kinetics model for decomposition of soil organic matter at hourly to seasonal time scales,” Global Change Biol. 18 (1), 371–384 (2012).

    Article  Google Scholar 

  26. 26

    E. A. Davidson, L. V. Verchot, J. Henrique Cattânio, I. L. Ackerman, and J. E. M. Carvalho, “Effects of soil water content on soil respiration in forests and cattle pastures of eastern Amazonia,” Biogeochemistry 48 (1), 53–69 (2000). https://doi.org/10.1023/A:1006204113917

    Article  Google Scholar 

  27. 27

    H. S. Dhadli, B. S. Brar, and T. A. Black, “Influence of crop growth and weather variables on soil CO2 emissions in a maize-wheat cropping system,” Agric. Res. J. 52 (3), 28–34 (2015).

    Article  Google Scholar 

  28. 28

    D. Dhital, S. Prajapati, S. R. Maharjan, and H. Koizumi, “Soil carbon dioxide emission: soil respiration measurement in temperate grassland, Nepal,” J. Environ. Prot. 10 (2), 289–314 (2019). https://doi.org/10.4236/jep.2019.102017

    Article  Google Scholar 

  29. 29

    J. Ding, L. Chen, B. Zhang, L. Liu, G. Yang, K. Fang, Y. Chen, F. Li, D. Kou, and C. Ji, “Linking temperature sensitivity of soil CO2 release to substrate, environmental, and microbial properties across alpine ecosystems,” Global Biogeochem. Cycles 30 (9), 1310–1323 (2016).

    Article  Google Scholar 

  30. 30

    W. Ding, H. Yu, Z. Cai, F. Han, and Z. Xu, “Responses of soil respiration to N fertilization in a loamy soil under maize cultivation,” Geoderma 155 (3–4), 381–389 (2010). https://doi.org/10.1016/j.geoderma.2009.12.023

    Article  Google Scholar 

  31. 31

    F. E. Dreesen, H. J. De Boeck, I. A. Janssens, and I. Nijs, “Do successive climate extremes weaken the resistance of plant communities? An experimental study using plant assemblages,” Biogeosciences 11 (1), 109–121 (2014). https://doi.org/10.5194/bg-11-109-2014

    Article  Google Scholar 

  32. 32

    S. H. Drotz, T. Sparrman, M. B. Nilsson, J. Schleucher, and M. G. Öquist, “Both catabolic and anabolic heterotrophic microbial activity proceed in frozen soils,” Proc. Natl. Acad. Sci. U.S.A. 107 (49), 21046–21051 (2010).

    Article  Google Scholar 

  33. 33

    C. Fang and J. B. Moncrieff, “A model for soil CO2 production and transport 1: Model development,” Agric. For. Meteorol. 95 (4), 225–236 (1999).

    Article  Google Scholar 

  34. 34

    J. Feng, J. Wang, L. Ding, P. Yao, M. Qiao, and S. Yao, “Meta-analyses of the effects of major global change drivers on soil respiration across China,” Atmos. Environ. 150, 181–186 (2017).

    Article  Google Scholar 

  35. 35

    L. B. Flanagan and B. G. Johnson, “Interacting effects of temperature, soil moisture and plant biomass production on ecosystem respiration in a northern temperate grassland,” Agric. For. Meteorol. 130 (3–4), 237–253 (2005).

    Article  Google Scholar 

  36. 36

    D. Gaumont-Guay, T. A. Black, T. J. Griffis, A. G. Barr, R. S. Jassal, and Z. Nesic, “Interpreting the dependence of soil respiration on soil temperature and water content in a boreal aspen stand,” Agric. For. Meteorol. 140 (1–4), 220–235 (2006). https://doi.org/10.1016/j.agrformet.2006.08.003

    Article  Google Scholar 

  37. 37

    A. A. Gitelson, Y. J. Kaufman, R. Stark, and D. Rundquist, “Novel algorithms for remote estimation of vegetation fraction,” Remote Sens. Environ. 80 (1), 76–87 (2002). https://doi.org/10.1016/S0034-4257(01)00289-9

    Article  Google Scholar 

  38. 38

    N. Gomez-Casanovas, R. Matamala, D. R. Cook, and M. A. Gonzalez-Meler, “Net ecosystem exchange modifies the relationship between the autotrophic and heterotrophic components of soil respiration with abiotic factors in prairie grasslands,” Global Change Biol. 18 (8), 2532–2545 (2012). https://doi.org/10.1111/j.1365-2486.2012.02721.x

    Article  Google Scholar 

  39. 39

    P. J. Hanson, N. T. Edwards, C. T. Garten, and J. A. Andrews, “Separating root and soil microbial contributions to soil respiration: a review of methods and observations,” Biogeochemistry 48, 115–146 (2000).

    Article  Google Scholar 

  40. 40

    C. W. Harper, J. M. Blair, P. A. Fay, A. K. Knapp, and J. D. Carlisle, “Increased rainfall variability and reduced rainfall amount decreases soil CO2 flux in a grassland ecosystem,” Global Change Biol. 11 (2), 322–334 (2005).

    Article  Google Scholar 

  41. 41

    R. Hasibeder, L. Fuchslueger, A. Richter, and M. Bahn, “Summer drought alters carbon allocation to roots and root respiration in mountain grassland,” New Phytol. 205 (3), 1117–1127 (2015). https://doi.org/10.1111/nph.13146

    Article  Google Scholar 

  42. 42

    M. N. Högberg, M. J. I. Briones, S. G. Keel, D. B. Metcalfe, C. Campbell, A. J. Midwood, B. Thornton, V. Hurry, S. Linder, T. Näsholm, and P. Högberg, “Quantification of effects of season and nitrogen supply on tree below-ground carbon transfer to ectomycorrhizal fungi and other soil organisms in a boreal pine forest,” New Phytol. 187 (2), 485–493 (2010). https://doi.org/10.1111/j.1469-8137.2010.03274.x

    Article  Google Scholar 

  43. 43

    Y. Hosen, H. Tsuruta, and K. Minami, “Effects of the depth of NO and N2O productions in soil on their emission rates to the atmosphere: analysis by a simulation model,” Nutr. Cycl. Agroecosyst. 57 (1), 83–98 (2000).

    Article  Google Scholar 

  44. 44

    B. Huang and J. Fu, “Photosynthesis, respiration, and carbon allocation of two cool-season perennial grasses in response to surface soil drying,” Plant Soil 227 (1–2), 17–26 (2000). https://doi.org/10.1023/A:1026512212113

    Article  Google Scholar 

  45. 45

    N. Huang, Z. Niu, Y. Zhan, S. Xu, M.C. Tappert, C. Wu, W. Huang, S. Gao, X. Hou, and D. Cai, “Relationships between soil respiration and photosynthesis-related spectral vegetation indices in two cropland ecosystems,” Agric. For. Meteorol. 160, 80–89 (2012).

    Article  Google Scholar 

  46. 46

    J. Ingrisch, S. Karlowsky, A. Anadon-Rosell, R. Hasibeder, A. König, A. Augusti, G. Gleixner, and M. Bahn, “Land use alters the drought responses of productivity and CO2 fluxes in mountain grassland,” Ecosystems 21 (4), 689–703 (2018). https://doi.org/10.1007/s10021-017-0178-0

    Article  Google Scholar 

  47. 47

    I. A. Janssens, W. Dieleman, S. Luyssaert, J.-A. Subke, M. Reichstein, R. Ceulemans, P. Ciais, A. J. Dolman, J. Grace, and G. Matteucci, “Reduction of forest soil respiration in response to nitrogen deposition,” Nat Geosci. 3 (5), 315–322 (2010).

    Article  Google Scholar 

  48. 48

    H. Jiang, Q. Deng, G. Zhou, D. Hui, D. Zhang, S. Liu, G. Chu, and J. Li, “Responses of soil respiration and its temperature/moisture sensitivity to precipitation in three subtropical forests in southern China,” Biogeosciences 10 (6), 3963 (2013).

    Article  Google Scholar 

  49. 49

    A. E. Johnston, P. R. Poulton, and K. Coleman, “Soil organic matter: its importance in sustainable agriculture and carbon dioxide fluxes,” Adv. Agron. 101, 1–57 (2009).

    Article  Google Scholar 

  50. 50

    M. S. Kadulin, I. E. Smirnova, and G. N. Koptsyk, “The emission of carbon dioxide from soils of the Pasvik nature reserve in the Kola Subarctic,” Eurasian Soil Sci. 50, 1055–1068 (2017). https://doi.org/10.1134/S1064229317090034

    Article  Google Scholar 

  51. 51

    S. Karlowsky, A. Augusti, J. Ingrisch, R. Hasibeder, M. Lange, S. Lavorel, M. Bahn, and G. Gleixner, “Land use in mountain grasslands alters drought response and recovery of carbon allocation and plant-microbial interactions,” J. Ecol. 106 (3), 1230–1243 (2018). https://doi.org/10.1111/1365-2745.12910

    Article  Google Scholar 

  52. 52

    Y. Kuzyakov and A.A. Larionova, “Root and rhizomicrobial respiration: a review of approaches to estimate respiration by autotrophic and heterotrophic organisms in soil,” J. Plant Nutr. Soil Sci. 168 (4), 503–520 (2005).

    Article  Google Scholar 

  53. 53

    J. Lee, J. W. Hopmans, C. van Kessel, A. P. King, K. J. Evatt, D. Louie, D. E. Rolston, and J. Six, “Tillage and seasonal emissions of CO2, N2O and NO across a seed bed and at the field scale in a Mediterranean climate,” Agric. Ecosyst. Environ. 129 (4), 378–390 (2009).

    Article  Google Scholar 

  54. 54

    . Li, Q. Ou, and Y. Chen, “Decomposition of China’s CO2 emissions from agriculture utilizing an improved Kaya identity,” Environ. Sci. Pollut. Res. 21 (22), 13000–13006 (2014). 10.1007/s11356-014-3250-

    Article  Google Scholar 

  55. 55

    Y. Li, M. Xu, O. J. Sun, and W. Cui, “Effects of root and litter exclusion on soil CO2 efflux and microbial biomass in wet tropical forests,” Soil Biol. Biochem. 36 (12), 2111–2114 (2004). https://doi.org/10.1016/j.soilbio.2004.06.003

    Article  Google Scholar 

  56. 56

    J. Lloyd and J. A. Taylor, “On the temperature dependence of soil respiration,” Funct. Ecol. 8 (3), 315 (1994). https://doi.org/10.2307/2389824

    Article  Google Scholar 

  57. 57

    V. O. Lopes de Gerenyu, I. N. Kurganova, L. N. Rozanova, and V. N. Kudeyarov, “Effect of soil temperature and moisture on CO2 evolution rate of cultivated phaeozem: analysis of a long-term field experiment,” Plant, Soil Environ. 51 (5), 213–219 (2005). https://doi.org/10.17221/3576-PSE

    Article  Google Scholar 

  58. 58

    S. Manzoni, J. P. Schimel, and A. Porporato, “Responses of soil microbial communities to water stress: results from a meta-analysis,” Ecology 93 (4), 930–938 (2012). https://doi.org/10.1890/11-0026.1

    Article  Google Scholar 

  59. 59

    E. G. Mbonimpa, C. O. Hong, V. N. Owens, R. M. Lehman, S. L. Osborne, T. E. Schumacher, D. E. Clay, and S. Kumar, “Nitrogen fertilizer and landscape position impacts on CO2 and CH4 fluxes from a landscape seeded to switchgrass,” GCB Bioenergy 7 (4), 836–849 (2015).

    Article  Google Scholar 

  60. 60

    F. E. Moyano, O. K. Atkin, M. Bahn, D. Bruhn, A. J. Burton, A. Heinemeyer, W. L. Kutsch, and G. Wieser, “Respiration from roots and the mycorrhizosphere,” in Soil Carbon Dynamics: An Integrated Methodology, Ed. by W. L. Kutsch, et al. (Cambridge University Press, Cambridge, 2010), pp. 127–156. https://doi.org/10.1017/CBO9780511711794.008

  61. 61

    F. E. Moyano, S. Manzoni, and C. Chenu, “Responses of soil heterotrophic respiration to moisture availability: An exploration of processes and models,” Soil Biol. Biochem. 59, 72–85 (2013). https://doi.org/10.1016/j.soilbio.2013.01.002

    Article  Google Scholar 

  62. 62

    H. Muraoka, H. M. Noda, S. Nagai, T. Motohka, T. M. Saitoh, K. N. Nasahara, and N. Saigusa, “Spectral vegetation indices as the indicator of canopy photosynthetic productivity in a deciduous broadleaf forest,” J. Plant Ecol. 6 (5), 393–407 (2013).

    Article  Google Scholar 

  63. 63

    S. Nagai, R. Ishii, A. Bin Suhaili, H. Kobayashi, M. Matsuoka, T. Ichie, T. Motohka, J. J. Kendawang, and R. Suzuki, “Usability of noise-free daily satellite-observed green–red vegetation index values for monitoring ecosystem changes in Borneo,” Int. J. Remote Sens. 35 (23), 7910–7926 (2014).

    Article  Google Scholar 

  64. 64

    Z. Nagy, K. Pintér, M. Pavelka, E. Darenová, and J. Balogh, “Carbon fluxes of surfaces vs. ecosystems: Advantages of measuring eddy covariance and soil respiration simultaneously in dry grassland ecosystems,” Biogeosciences 8 (9), 2523–2534 (2011). https://doi.org/10.5194/bg-8-2523-2011

    Article  Google Scholar 

  65. 65

    T. Nakano, M. Nemoto, and M. Shinoda, “Environmental controls on photosynthetic production and ecosystem respiration in semi-arid grasslands of Mongolia,” Agric. For. Meteorol. 148, 1456–1466 (2008). https://doi.org/10.1016/j.agrformet.2008.04.011

    Article  Google Scholar 

  66. 66

    M. Papp, S. Fóti, Z. Nagy, K. Pintér, K. Posta, S. Fekete, Z. Csintalan, and J. Balogh, “Rhizospheric, mycorrhizal and heterotrophic respiration in dry grasslands,” Eur. J. Soil Biol. 85, 43–52 (2018). https://doi.org/10.1016/j.ejsobi.2018.01.005

    Article  Google Scholar 

  67. 67

    R Core Team, R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2019).

    Google Scholar 

  68. 68

    R Core Team, R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2018).

    Google Scholar 

  69. 69

    K. S. Ramirez, J. M. Craine, and N. Fierer, “Nitrogen fertilization inhibits soil microbial respiration regardless of the form of nitrogen applied,” Soil Biol. Biochem. 42 (12), 2336–2338 (2010).

    Article  Google Scholar 

  70. 70

    M. Reichstein, E. Falge, D. Baldocchi, D. Papale, M. Aubinet, P. Berbigier, C. Bernhofer, N. Buchmann, T. Gilmanov, A. Granier, T. Grünwald, K. Havránková, H. Ilvesniemi, D. Janous, A. Knohl, et al., “On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm,” Global Change Biol. 11 (9), 1424–1439 (2005). https://doi.org/10.1111/j.1365-2486.2005.001002.x

    Article  Google Scholar 

  71. 71

    M. Reichstein, A. Rey, A. Freibauer, J. Tenhunen, R. Valentini, J. Banza, P. Casals, Y. Cheng, J. M. Grünzweig, J. Irvine, R. Joffre, B. E. Law, D. Loustau, F. Miglietta, W. Oechel, et al., “Modeling temporal and large-scale spatial variability of soil respiration from soil water availability, temperature and vegetation productivity indices,” Global Biogeochem. Cycles 17 (4), 1104 (2003). https://doi.org/10.1029/2003gb002035

    Article  Google Scholar 

  72. 72

    D. Risk, L. Kellman, and H. Beltrami, “Carbon dioxide in soil profiles: production and temperature dependence,” Geophys. Res. Lett. 29 (6), 1–4 (2002). https://doi.org/10.1029/2001GL014002

    Article  Google Scholar 

  73. 73

    K. Savage, E. A. Davidson, and J. Tang, “Diel patterns of autotrophic and heterotrophic respiration among phenological stages,” Global Change Biol. 19 (4), 1151–1159 (2013). https://doi.org/10.1111/gcb.12108

    Article  Google Scholar 

  74. 74

    G. Schaufler, B. Kitzler, A. Schindlbacher, U. Skiba, M. A. Sutton, and S. Zechmeister-Boltenstern, “Greenhouse gas emissions from European soils under different land use: effects of soil moisture and temperature,” Eur. J. Soil Sci. 61 (5), 683–696 (2010).

    Article  Google Scholar 

  75. 75

    Z.-X. Shen, Y.-L. Li, and G. Fu, “Response of soil respiration to short-term experimental warming and precipitation pulses over the growing season in an alpine meadow on the Northern Tibet,” Appl. Soil Ecol. 90, 35–40 (2015).

    Article  Google Scholar 

  76. 76

    K. A. Smith, T. Ball, F. Conen, K. E. Dobbie, J. Massheder, and A. Rey, “Exchange of greenhouse gases between soil and atmosphere: interactions of soil physical factors and biological processes,” Eur. J. Soil Sci. 69 (1), 10–20 (2018). https://doi.org/10.1111/ejss.12539

    Article  Google Scholar 

  77. 77

    Y. Talmon, M. Sternberg, and J. M. Grünzweig, “Impact of rainfall manipulations and biotic controls on soil respiration in Mediterranean and desert ecosystems along an aridity gradient,” Global Change Biol. 17 (2), 1108–1118 (2011). https://doi.org/10.1111/j.1365-2486.2010.02285.x

    Article  Google Scholar 

  78. 78

    J. Tang, D. D. Baldocchi, and L. Xu, “Tree photosynthesis modulates soil respiration on a diurnal time scale,” Global Change Biol. 11 (8), 1298–1304 (2005). https://doi.org/10.1111/j.1365-2486.2005.00978.x

    Article  Google Scholar 

  79. 79

    J. Tang, J. Wang, Z. Li, S. Wang, and Y. Qu, “Effects of irrigation regime and nitrogen fertilizer management on CH4, N2O and CO2 emissions from saline–alkaline paddy fields in Northeast China,” Sustainability 10 (2), 475 (2018). https://doi.org/10.3390/su10020475

    Article  Google Scholar 

  80. 80

    R. Vargas and M. F. Allen, “Dynamics of fine root, fungal rhizomorphs, and soil respiration in a mixed temperate forest: integrating sensors and observations,” Vadose Zone J. 7 (3), 1055–1064 (2008).

    Article  Google Scholar 

  81. 81

    R. Vargas, D. D. Baldocchi, M. Bahn, P. J. Hanson, K. P. Hosman, L. Kulmala, J. Pumpanen, and B. Yang, “On the multi-temporal correlation between photosynthesis and soil CO2 efflux: reconciling lags and observations,” New Phytol. 191 (4), 1006–1017 (2011). https://doi.org/10.1111/j.1469-8137.2011.03771.x

    Article  Google Scholar 

  82. 82

    S. Wan, R. J. Norby, J. Ledford, and J. F. Weltzin, “Responses of soil respiration to elevated CO2, air warming, and changing soil water availability in a model old-field grassland,” Global Change Biol. 13 (11), 2411–2424 (2007). https://doi.org/10.1111/j.1365-2486.2007.01433.x

    Article  Google Scholar 

  83. 83

    Z. Wang, L. Ji, X. Hou, and M. P. Schellenberg, “Soil respiration in semiarid temperate grasslands under various land management,” PLoS One 11 (3), e0151719 (2016). https://doi.org/10.1371/journal.pone.0147987

    Article  Google Scholar 

  84. 84

    E. K. Webb, G. I. Pearman, and R. Leuning, “Correction of flux measurements for density effects due to heat and water vapor transfer,” Q. J. R. Meteorol. Soc. 106, 85–100 (1980).

    Article  Google Scholar 

  85. 85

    J. Whitaker, N. Ostle, A. T. Nottingham, A. Ccahuana, N. Salinas, R. D. Bardgett, P. Meir, and N. P. Mcnamara, “Microbial community composition explains soil respiration responses to changing carbon inputs along an Andes-to-Amazon elevation gradient,” J. Ecol. 102 (4), 1058–1071 (2014). https://doi.org/10.1111/1365-2745.12247

    Article  Google Scholar 

  86. 86

    X. Wu, Z. Yao, N. Brüggemann, Z. Y. Shen, B. Wolf, M. Dannenmann, X. Zheng, and K. Butterbach-Bahl, “Effects of soil moisture and temperature on CO2 and CH4 soil–atmosphere exchange of various land use/cover types in a semi-arid grassland in Inner Mongolia, China,” Soil Biol. Biochem. 42 (5), 773–787 (2010).

    Article  Google Scholar 

  87. 87

    J. C. Yuste, I. A. Janssens, A. Carrara, L. Meiresonne, and R. Ceulemans, “Interactive effects of temperature and precipitation on soil respiration in a temperate maritime pine forest,” Tree Physiol. 23 (18), 1263–1270 (2003).

    Article  Google Scholar 

  88. 88

    Q. Zhang, H. M. Lei, and D. W. Yang, “Seasonal variations in soil respiration, heterotrophic respiration and autotrophic respiration of a wheat and maize rotation cropland in the North China Plain,” Agric. For. Meteorol. 180, 34–43 (2013). https://doi.org/10.1016/j.agrformet.2013.04.028

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This study was supported by the Stipendium Hungaricum Scholarship and by the Ministry of Innovation and Technology within the framework of the Thematic Excellence Program 2020, Institutional Excellence Sub-Program (TKP2020-IKA-12) in the topic of water-related researches of Szent István University.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Insaf Malek.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Insaf Malek, Bouteldja, M., Posta, K. et al. Responses of Soil Respiration to Biotic and Abiotic Drivers in a Temperate Cropland. Eurasian Soil Sc. 54, 1038–1048 (2021). https://doi.org/10.1134/S1064229321070097

Download citation

Keywords:

  • cropland
  • cumulative CO2 efflux
  • N fertilization
  • vegetation index