Skip to main content

Estimation of the Biogenicity and Bioactivity of Gleyed Agrogray Nondrained and Drained Soils

Abstract

A comparison of the biological activity and biogenicity of drained and nondrained gleyed agrogray soils (Luvic Greyzemic Stagnic Phaeozems) of Moscow oblast has been carried out using such indicators as microbial biomass carbon (Cmic), basal respiration (BR), and the contents of organic carbon (Corg), particulate organic matter (СPOM), and potentially mineralizable organic matter (C0). It has been found that the СPOM fraction turned out to be one of the indicators of the initial waterlogging stages, while the Cmic and BR indicators are sensitive to the degree of soil hydromorphism. It is proposed to evaluate soil biogenicity using Сorg and СPOM parameters; while С0, Сmic, and BR parameters should be applied to evaluate soil bioactivity. Gleyed agrogray soils at different stages of waterlogging are close in their biogenicity but differ in bioactivity. The humus state of the gleyed agrogray soil changes during the period of efficient functioning of drainage. The gleyed agrogray soil in terms of biogenicity and bioactivity becomes similar to its automorphic zonal analog.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.

REFERENCES

  1. 1

    V. M. Alifanov, R. P. Lichko, N. A. Loshakova, and V. I. Steputina, “Enzymatic activity of gray forest soils,” Pochvovedenie, No. 11, 127–132 (1976).

    Google Scholar 

  2. 2

    N. D. Ananyeva, E. A. Susyan, and E. G. Gavrilenko, “Determination of the soil microbial biomass carbon using the method of substrate-induced respiration,” Eurasian Soil Sci. 44, 1215–1221 (2011).

    Article  Google Scholar 

  3. 3

    E. G. Gavrilenko, E. A. Susyan, N. D. Anan’eva, and O. A. Makarov, “Spatial variability in the carbon of microbial biomass and microbial respiration in soils of the south of Moscow oblast,” Eurasian Soil Sci. 44, 1125–1138 (2011).

    Article  Google Scholar 

  4. 4

    L. A. Grishina, Humification and Humic State of Soils (Moscow State Univ., Moscow, 1986) [in Russian].

    Google Scholar 

  5. 5

    T. G. Dobrovol’skaya, D. G. Zvyagintsev, I. Yu. Chernov, A. V. Golovchenko, G. M. Zenova, L. V. Lysak, N. A. Manucharova, O. E. Marfenina, L. M. Polyanskaya, A. L. Stepanov, and M. M. Umarov, “The role of microorganisms in the ecological functions of soils,” Eurasian Soil Sci. 48, 959–967 (2015). https://doi.org/10.1134/S1064229315090033

    Article  Google Scholar 

  6. 6

    F. R. Zaidelman and I. V. Kovalev, “Ecological-hydrological evaluation of light gray gleyed soils drained by trench and non-trench drainage,” Eurasian Soil Sci. 26, 87–100 (1994).

    Google Scholar 

  7. 7

    I. V. Kovalev, Doctoral Dissertation in Agriculture (Moscow, 2016).

  8. 8

    I. V. Kovalev and N. O. Kovaleva, “Biochemistry of lignin in soils of periodic excessive moistening (from the example of agrogray soils in Opolie landscapes of the Russian Plain),” Eurasian Soil Sci. 41, 1066–1076 (2008).

    Article  Google Scholar 

  9. 9

    N. O. Kovaleva and I. V. Kovalev, “Peculiarities of organic matter of Fe–Mn nodules in gray forest soils determined by 13C NMR-spectroscopy,” Vestn. Mosk. Univ., Ser. 17: Pochvoved., No. 2, 25–32 (2003).

  10. 10

    A. A. Larionova, B. N. Zolotareva, Yu. G. Kolyagin, A. K. Kvitkina, V. V. Kaganov, and V. N. Kudeyarov, “Composition of structural fragments and the mineralization rate of organic matter in zonal soils,” Eurasian Soil Sci. 48, 1110–1119 (2015). https://doi.org/10.1134/S1064229315100063

    Article  Google Scholar 

  11. 11

    T. N. Lebedeva, N. P. Masyutenko, V. M. Semenov, B. M. Kogut, N. B. Zinyakova, N. B. and A. S. Akimenko, “Effect of biological optimization of fertility of ordinary chernozem on quality of soil organic matter,” Agrokhimiya, No. 7, 10–19 (2018). https://doi.org/10.1134/S0002188118070086

    Article  Google Scholar 

  12. 12

    Methods of Soil Microbiology and Biochemistry, Ed. by D. G. Zvyagintsev (Moscow State Univ., Moscow, 1991) [in Russian].

    Google Scholar 

  13. 13

    D. S. Orlov, O. N. Biryukova, and M. S. Rozanova, “Revised system of the humus status parameters of soils and their genetic horizons Eurasian soil,” Eurasian Soil Sci. 37, 798–805 (2004).

    Google Scholar 

  14. 14

    L. M. Polyanskaya, Doctoral Dissertation in Biology (Moscow, 1996).

  15. 15

    Soils of Moscow Oblast and Their Use (Dokuchaev Soil Science Inst., Moscow, 2002), Vol. 1.

  16. 16

    V. M. Semenov, L. A. Ivannikova, T. V. Kuznetsova, N. A. Semenova, and A. K. Khodzhaeva, “Biokinetic indication of the mineralizable pool of soil organic matter,” Eurasian Soil Sci. 40, 1208–1216 (2007).

    Article  Google Scholar 

  17. 17

    V. M. Semenov, B. M. Kogut, N. B. Zinyakova, N. P. Masyutenko, L. S. Malyukova, T. N. Lebedeva, and A. S. Tulina, “Biologically active organic matter in soils of European Russia,” Eurasian Soil Sci. 51, 434–447 (2018). https://doi.org/10.1134/S1064229318040117

    Article  Google Scholar 

  18. 18

    V. M. Semenov, T. N. Lebedeva, and N. B. Pautova, “Particulate organic matter in noncultivated and arable soils,” Eurasian Soil Sci. 52, 396–404 (2019). https://doi.org/10.1134/S1064229319040136

    Article  Google Scholar 

  19. 19

    M. V. Semenov, N. A. Manucharova, G. S. Krasnov, D. A. Nikitin, and A. L. Stepanov, “Biomass and taxonomic structure of microbial communities in soils of the right-bank basin of the Oka River,” Eurasian Soil Sci. 52, 971–981 (2019). https://doi.org/10.1134/S106422931908012X

    Article  Google Scholar 

  20. 20

    M. V. Semenov, N. A. Manucharova, and A. L. Stepanov, “Distribution of metabolically active prokaryotes (Archaea and Bacteria) throughout the profiles of chernozem and brown semidesert soil,” Eurasian Soil Sci. 49, 217–225 (2016). https://doi.org/10.1134/S1064229316020101

    Article  Google Scholar 

  21. 21

    M. V. Semenov, E. V. Stolnikova, N. D. Ananyeva, and K. V. Ivashchenko, “Structure of the microbial community in soil catena of the right bank of the Oka River,” Biol. Bull. (Moscow) 40, 266–274 (2013). https://doi.org/10.1134/S1062359013030084

    Article  Google Scholar 

  22. 22

    I. S. Urusevskaya, Yu. L. Meshalkina, and O. S. Khokhlova, “Geographic and genetic features of the humus status of gray forest soils,” Pochvovedenie, No. 11, 1377–1390 (2000).

    Google Scholar 

  23. 23

    C. A. Cambardella and E. T. Elliott, “Particulate soil organic-matter changes across a grassland cultivation sequence,” Soil Sci. Soc. Am. J. 56 (3), 777–783 (1992). https://doi.org/10.2136/sssaj1992.03615995005600030017x

    Article  Google Scholar 

  24. 24

    K. Y. Chan, “Soil particulate organic carbon under different land use and management,” Soil Use Manage. 17 (4), 217–221 (2001). https://doi.org/10.1111/j.1475-2743.2001.tb00030.x

    Article  Google Scholar 

  25. 25

    I. V. Kovalev and N. O. Kovaleva, “Evaluation of the effect of modern drainage technologies on the physical properties and productivity of mineral hydromorphic soils,” IOP Conf. Ser.: Earth Environ. Sci. 368, 012024 (2019). https://doi.org/10.1088/1755-1315/368/1/012024

  26. 26

    I. V. Kovalev and N. O. Kovaleva, “The role of lignin phenols in organic-mineral interactions in soils,” in Proceedings of the 19th International Conf. “Humus Substances and their Contribution to the Climate Change Mitigation” (Bulgarian Humic Substances Society, Sofia, 2018. P. 119–122.

  27. 27

    M. Kleber and J. Lehmann, “Humic substances extracted by alkali are invalid proxies for the dynamics and functions of organic matter in terrestrial and aquatic ecosystems,” J. Environ. Qual. 48, 207–216 (2019). https://doi.org/10.2134/jeq2019.01.0036

    Article  Google Scholar 

  28. 28

    J. M. Lavallee, J. L. Soong, and M. F. Cotrufo, “Conceptualizing soil organic matter into particulate and mineral-associated forms to address global change in the 21st century,” Global Change Biol. 26, 261–273 (2020). https://doi.org/10.1111/gcb.14859

    Article  Google Scholar 

  29. 29

    N. McLoughlin, “Biogenicity,” in Encyclopedia of Astrobiology (Springer-Verlag, Berlin, 2011). https://doi.org/10.1007/978-3-642-11274-4

  30. 30

    C. Merino, R. Godoy, and F. Matus, “Soil enzymes and biological activity at different levels of organic matter stability,” J. Soil Sci. Plant Nutr. 16 (1), 14–30 (2016). https://doi.org/10.4067/S0718-95162016005000002

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are thankful to doctor of biology L.M. Polyanskaya for consulting and assignation of instrumental base for determination the population density of fungal and bacterial biomass in soil and to A.L. Kharlak for participation in the work in 2018.

Funding

Experimental data were obtained with financial support of the Russian Science Foundation, project no. 17-14-01120p. Soil sampling in the experimental ameliorative area and determination of the elemental composition of soil were performed within the framework of state assignment (state registration numbers АААА-А16-117031410017-4, АААА-А18-118013190177-9, 0191-2019-0045, and 121040800146-3).

Author information

Affiliations

Authors

Corresponding author

Correspondence to I. V. Kovalev.

Ethics declarations

The authors declare that they have no conflicts of interests.

Additional information

Translated by T. Chicheva

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kovalev, I.V., Semenov, V.M., Kovaleva, N.O. et al. Estimation of the Biogenicity and Bioactivity of Gleyed Agrogray Nondrained and Drained Soils. Eurasian Soil Sc. 54, 1059–1067 (2021). https://doi.org/10.1134/S1064229321070073

Download citation

Keywords:

  • soil hydromorphism
  • drainage
  • organic carbon
  • microbial biomass
  • potentially mineralizable organic matter
  • particulate organic matter