Skip to main content

The Use of the Soil-Geomorphological Database for Studying the Spatial Variability of the Humus Content, Physical Clay, and Clay in the Soils of the Kuznetsk–Salair Geomorphological Province

Abstract—

Based on archival data on the soils of the Kuznetsk–Salair geomorphological province (within Novosibirsk oblast) and the results of processing digital elevation models, a soil-geomorphological database (SGDB) has been developed for collecting, storing, and processing spatially distributed information. The SGDB consists of tables and related vector and raster cartographic data with information on the chemical and physical properties of soil horizons, morphometric characteristics of topography (height, steepness, topographic wetness index, risk factor for the development of erosion, stream power index, terrain ruggedness index, topographic position index, etc.). The following soils are widespread in the study area: leached chernozems (Luvic Chernozems) and podzolized chernozems (Luvic Greyzemic Chernozems); ordinary meadow-chernozemic soils (Gleyic Chernozems) and podzolized meadow-chernozemic soils (Greyzemic Gleyic Chernozems); podzolized light gray, gray and dark gray forest soils (Luvic Greyzemic Phaeozems); calcareous meadow soils (Eutric Gleysols); podzolized meadow soils (Haplic Gleysols); solonchakous meadow soils (Haplic Gleysols (Protosalic)); meadow alluvial soils (Eutric Fluvisols); and meadow solonetzes (Gleyic Solonetzes). The analysis of the created maps made it possible to identify a trend of an increase in the humus content, physical clay, and clay in the upper soil horizon from the northeast to the southwest of the study area. A similar trend was noted for the topographic wetness index. The opposite trend was detected for the content of physical clay and clay in the parent rock, i.e., an increase in the content of physical clay and clay from the southwest to the northeast. It was found that the soils in river valleys and on plains are characterized by higher contents of humus, physical clay, and clay in comparison with the soils of the upper parts of slopes and tops of local hills. No significant correlations were found between the morphometric parameters of the relief and the contents of humus, physical clay, and clay in the topsoil horizons and parent rocks.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. 1

    Agrochemical Methods of Soil Studies (Nauka, Moscow, 1975) [in Russian].

  2. 2

    N. I. Belousova and Yu. L. Meshalkina, “Experience in creating a unified database on the boreal soils of Russia (methodological issues),” Eurasian Soil Sci. 30, 820–827 (1997).

    Google Scholar 

  3. 3

    I. D. Braude, Soil Erosion and Drought and Their Control in the Central Chernozem Region (Nauka, Moscow, 1965) [in Russian].

    Google Scholar 

  4. 4

    A. F. Vadyunina and Z. A. Korchagina, Methods to Study Soil Physical Properties (Agropromizdat, Moscow, 1986) [in Russian].

    Google Scholar 

  5. 5

    N. V. Gopp, T. V. Nechaeva, O. A. Savenkov, N. V. Smirnova, and V. V. Smirnov, “Indicative capacity of NDVI in predictive mapping of the properties of plow horizons of soils on slopes in the south of Western Siberia,” Eurasian Soil Sci. 50, 1332–1343 (2017).

    Article  Google Scholar 

  6. 6

    N. V. Gopp, T. V. Nechaeva, O. A. Savenkov, N. V. Smirnova, and V. V. Smirnov, “The methods of geomorphometry and digital soil mapping for assessing spatial variability in the properties of agrogray soils on a slope,” Eurasian Soil Sci. 50, 20–29 (2017).

    Article  Google Scholar 

  7. 7

    A. J. Gerrard, Soils and Landforms: An Integration of Geomorphology and Pedology (George Allen and Unwin, London, 1981; Nedra, Leningrad, 1984).

  8. 8

    Classification and Diagnostics of Soils of the Soviet Union (Kolos, Moscow, 1977) [in Russian].

  9. 9

    R. V. Kovalev, Soils of Novosibirsk Oblast (Nauka, Novosibirsk, 1966) [in Russian].

    Google Scholar 

  10. 10

    V. S. Kryshchenko, O. M. Golozubov, V. V. Kolesov, and T. V. Rybyanets, Database of the Composition and Properties of Soils (Rostov Social and Economic Institute, Rostov-on-Don, 2008) [in Russian].

    Google Scholar 

  11. 11

    S. S. Neustruev, Genesis and Geography of Soils (Nauka, Moscow, 1977) [in Russian].

    Google Scholar 

  12. 12

    A. D. Orlov, Erosion and Erosion-Prone Lands in Western Siberia (Nauka, Novosibirsk, 1983) [in Russian].

    Google Scholar 

  13. 13

    Vegetation of Steppe and Forest-Steppe Zones of Western Siberia: Novosibirsk Oblast and Altai Krai, Tr. Tsentr. Sib. Bot. Sada no. 6, Ed. by A. V. Kuminova (Academy of Sciences of USSR, Novosibirsk, 1963) [in Russian].

    Google Scholar 

  14. 14

    V. A. Rozhkov, I. O. Alyabina, V. M. Kolesnikova, E. N. Molchanov, V. S. Stolbovoi, and S. A. Shoba, “Soil-geographical database of Russia,” Eurasian Soil Sci. 43, 1–4 (2010).

    Article  Google Scholar 

  15. 15

    N. P. Sorokina, Methodology of the Creation of Large-Scale Agroecological Soil Maps (Rossel’khozakademiya, Moscow, 2006) [in Russian].

    Google Scholar 

  16. 16

    I. V. Florinsky, “The Dokuchaev hypothesis as a basis for predictive digital soil mapping (on the 125th anniversary of its publication),” Eurasian Soil Sci. 45, 445–451 (2012).

    Article  Google Scholar 

  17. 17

    I. V. Florinskii, R. G. Eilers, D. L. Burton, S. K. McMahon, C. M. Monreal, and A. Farenhorst, “Predictive soil mapping based on digital terrain modeling,” Geoinformatika, No. 1, 22–32 (2009).

    Google Scholar 

  18. 18

    G. A. Chernov, V. V. Vdovin, P. A. Okishev, A. A. Petkevich, A. A. Mistryukov, A. A. Zyat’kova, and L. S. Milyaeva, Relief of the Altai-Sayan Mountain Region (Nauka, Novosibirsk, 1988) [in Russian].

    Google Scholar 

  19. 19

    P. A. Sharyi, “Geomorphometry in earth science and ecology, review of methods and application fields,” Izv. Samar. Nauchn. Tsentra, Ross. Akad. Nauk, No. 8 (2), 458–473 (2006).

    Google Scholar 

  20. 20

    P. A. Shary and D. L. Pinskii, “Statistical evaluation of the relationships between spatial variability in the organic carbon content in gray forest soils, soil density, concentrations of heavy metals, and topography,” Eurasian Soil Sci. 46, 1076–1087 (2013).

    Article  Google Scholar 

  21. 21

    S. A. Shoba, I. O. Alyabina, V. M. Kolesnikova, E. N. Molchanov, V. A. Rozhkov, V. S. Stolbovoi, I. S. Urusevskaya, B. V. Sheremet, and D. E. Konyushkov, Soil Resources of Russia: Soil-Geographic Database, Ed. by G. V. Dobrovol’skii (GEOS, Moscow, 2010) [in Russian].

    Google Scholar 

  22. 22

    K. J. Beven and M. J. Kirkby, “A physically-based variable contributing area model of basin hydrology,” Hydrol. Sci. Bull. 24 (1), 43–69 (1979).

    Article  Google Scholar 

  23. 23

    J. Boehner and T. Selige, “Spatial prediction of soil attributes using terrain analysis and climate regionalization,” in SAGA—Analysis and Modeling Applications (Verlag Erich Goltze, Göttingen, 2006), Vol. 115, pp. 13–27.

    Google Scholar 

  24. 24

    D. M. Brough, J. Claridge and M. J. Grundy, Soil and Landscape Attributes: A Report on the Creation of a Soil and Landscape Information System for Queensland (Department of Natural Resources, Mines and Water, Brisbane, 2006).

    Google Scholar 

  25. 25

    O. Conrad, B. Bechtel, M. Bock, H. Dietrich, E. Fischer, L. Gerlitz, J. Wehberg, V. Wichmann, and J. Böhner, “System for Automated Geoscientific Analyses (SAGA) v. 2.1.4,” Geosci. Model Dev. 8, 1991–2007 (2015). https://doi.org/10.5194/gmd-8-1991-2015

    Article  Google Scholar 

  26. 26

    P. Desmet and G. Govers, “A GIS procedure for automatically calculating the ULSE LS factor on topographically complex landscape units,” J. Soil Water Conserv. 51, 427–433 (1996).

    Google Scholar 

  27. 27

    P. Finke, R. Hartwich, R. Dudal, J. Ibanez, et al., Georeferensced Soil Database for Europe: Manual of Procedures, Version 1.1 (European Soil Bureau, Ispra, 2001).

    Google Scholar 

  28. 28

    I. V. Florinsky and G. A. Kuryakova, “Determination of grid size for digital terrain modeling in landscape investigations—Exemplified by soil moisture distribution at a micro-scale,” Int. J. Geogr. Inf. Sci. 14 (8), 815–832 (2000).

    Article  Google Scholar 

  29. 29

    A. Guisan, S. B. Weiss, and A. D. Weiss, “GLM versus CCA spatial modeling of plant species distribution,” Plant Ecol. 143, 107–122 (1999).

    Article  Google Scholar 

  30. 30

    S. Holm, “A simple sequentially rejective multiple test procedure,” Scand. J. Stat. 6 (2), 65–70 (1979).

    Google Scholar 

  31. 31

    J. Jiang, A.-X. Zhu, C.-Z. Qin, T. Zhu, J. Liu, F. Du, J. Liu, G. Zhang, and Y. An, “CyberSoLIM: A cyber platform for digital soil mapping,” Geoderma 263, 234–243 (2016).

    Article  Google Scholar 

  32. 32

    R. M. Johnston, S. J. Barry, E. Bleys, E. N. Bui, C. J. Moran, D. A. P. Simon, P. Carlile, N. J. McKenzie, B. L. Henderson, G. Chapman, M. Imhoff, D. Maschmedt, D. Howe, C. Grose, N. Schoknecht, et al., “ASRIS: the database,” Aust. J. Soil Res. 41 (6), 1021–1036 (2003). https://doi.org/10.1071/SR02033

    Article  Google Scholar 

  33. 33

    P. Lagacherie and A. B. McBratney, “Spatial soil information systems and spatial inference system: perspectives for digital soil mapping,” in Digital Soil Mapping. An Introductory Perspective (Elsevier, Amsterdam, 2007), pp. 3–25.

    Google Scholar 

  34. 34

    P. Lagacherie, A. McBratney, and M. Voltz, Digital Soil Mapping: An Introductory Perspective (Elsevier, Amsterdam, 2006).

    Google Scholar 

  35. 35

    A. B. McBratney, M. L. Mendonça Santos, and B. Minasny, “On digital soil mapping,” Geoderma 117, 3–52 (2003).

    Article  Google Scholar 

  36. 36

    I. D. Moore, R. B. Grayson, and A. R. Ladson, “Digital terrain modeling: a review of hydrological, geomorphological, and biological applications,” Hydrol. Process. 5 (1), (1991).

  37. 37

    V. Olaya, A Gentle Introduction to SAGA GIS (Gettingen University, Gettingen, 2004).

  38. 38

    V. Olaya and O. Conrad, “Geomorphometry in SAGA,” in Geomorphometry: Concepts, Software, Applications (Elsevier, Amsterdam, 2008).

    Google Scholar 

  39. 39

    OPENDEM. https://opendem.info/arc2meters.html. Accessed October 30, 2020.

  40. 40

    P. Panagos, P. Borrelli, and K. Meusburger, “A new European slope length and steepness factor (LS-factor) for modeling soil erosion by water,” Geosciences 5, 117–126 (2015).

    Article  Google Scholar 

  41. 41

    P. Panagos, M. van Liedekerke, A. Jones, and L. Montanarella, “European Soil Data Centre: Response to European policy support and public data requirements,” Land Use Policy 29 (2), 329–338 (2012). https://doi.org/10.1016/j.landusepol.2011.07.003

    Article  Google Scholar 

  42. 42

    K. G. Renard, G. R. Foster, G. A. Weesies, D. K. McCool, and D. C. Yoder, Predicting Soil Erosion by Water: A Guide to Conservation Planning with the Revised Universal Soil Loss Equation (RUSLE), Agric. Handb. No. 703 (US Department of Agriculture, Washington, DC, 1997).

  43. 43

    S. J. Riley, S. D. De Gloria, and R. Elliot, “A terrain ruggedness that quantifies topographic heterogeneity,” Intermt. J. Sci. 5 (1–4), 23–27 (1999).

    Google Scholar 

  44. 44

    Soil Science Division Staff, Soil Survey Manual, USDA Handb. No. 18, Ed. by C. Ditzler, K. Scheffe, and H. C. Monger (US Government Printing Office, Washington, DC, 2017).

  45. 45

    https://www.usgs.gov/centers/eros/science/usgs-eros-archive-digital-elevation-shuttle-radar-topography-mission-srtm-1-arc?qt-science_center_objects=0#qt-science_center_objects. Accessed October 30, 2020.

  46. 46

    V. W. P. van Engelen, N. H. Batjes, K. Dijkshoorn, and J. Huting, ISRIC Report 2005/06: Harmonized Global Soil Resources Database (Final Report) (ISRIC—World Soil Information, Wageningen, 2006).

  47. 47

    A. D. Weiss, Topographic position and landforms analysis, 2000. http://www.jennessent.com/downloads/ tpi-poster-tnc_18x22.pdf.

  48. 48

    A. D. Weiss, Topographic positions and landforms analysis,” in Proceedings of the 21st Annual ESRI International User Conf. (San Diego, 2001), pp. 9–13.

  49. 49

    J. P. Wilson and J. C. Gallant, Primary Topographic Attributes. Terrain Analysis: Principles and Applications (Wiley, Chichester, 2000), pp. 51–85.

    Google Scholar 

  50. 50

    W. H. Wischmeier and D. D. Smith, Predicting Rainfall Erosion Losses: A Guide to Conservation Planning, Agric. Handb. No. 537 (US Department of Agriculture, Washington, DC, 1978).

Download references

ACKNOWLEDGMENTS

The author is grateful to O.A. Savenkov for his help in collecting archival materials at the initial stage of this study.

Funding

This study was performed in agreement with the state assignment of the Institute of Soil Science and Agricultural Chemistry, Siberian Branch of the Russian Academy of Sciences, with financial support from the Ministry of Science and Higher Education of the Russian Federation.

Author information

Affiliations

Authors

Corresponding author

Correspondence to N. V. Gopp.

Additional information

Translated by D. Konyushkov

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gopp, N.V. The Use of the Soil-Geomorphological Database for Studying the Spatial Variability of the Humus Content, Physical Clay, and Clay in the Soils of the Kuznetsk–Salair Geomorphological Province. Eurasian Soil Sc. 54, 986–998 (2021). https://doi.org/10.1134/S106422932107005X

Download citation

Keywords:

  • morphometric parameters of the relief
  • mapping
  • LS-factor
  • SPI
  • TWI
  • TRI
  • TPI
  • SRTM
  • DEM