Skip to main content

Forest Pyrogenic Peat Soils and Gleyzems in Swampy Mountain Valleys in the South of Yenisei Siberia


The differences between eutrophic peat soils (Hypereutric Sapric Histosols) and peaty gleyzems (Eutric Histic Gleysols) 20 years after a forest-peat fire have been studied by the example of a spruce forest in a swampy river valley of the Kuznetsk Alatau (622 m a.s.l.). Soils with peat and peaty horizons are characterized by high variability of properties (Cv 25–33%). The ash content varies from 23 to 81%; pH, from 5.8 to 8.2; bulk density, from 0.094 to 0.494 g/cm3; Corg content, from 7 to 37%; and the volumetric water content of peat soil, from 31 to 85%. Four groups of pyrogenic peat soils have been objectively identified based on statistical parameters. The organic carbon content has the maximum ability to differentiate clusters (93%). A much smaller proportion of the difference is provided by the moisture of peat soil (6%). Soil clusters identified at the taxonomic level of the species as peat, peaty gleyzems, shallow peaty gleyzems, and destructive soils identify the soil cover pattern of the fire area. New information complements and clarifies the data on carbon losses, which are estimating mainly by the depth of burning of the peat layer. The value of additional losses within the 0–20 cm layer is 0.4–6.3 kg C/m2 depending on the intensity of pyrogenic effects, being equivalent to carbon dioxide emissions from 1.4 to 23 kg/m2.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.


  1. 1

    Agrochemical Methods of Soil Study (Nauka, Moscow, 1975) [in Russian].

  2. 2

    G. P. Amosov, Specificity of Burning Process during Forest Fires (Leningrad Forestry Research Institute, Leningrad, 1958) [in Russian].

    Google Scholar 

  3. 3

    S. V. Vasil’ev, Forest and Mire Landscapes of Western Siberia (Izd. Nauchno-Tekh. Lit., Tomsk, 2007) [in Russian].

    Google Scholar 

  4. 4

    S. E. Vomperskii, T. V. Glukhova, M. V. Smagina, and A. G. Kovalev, “Conditions and consequences of fires in pine forests on drained swamps,” Lesovedenie, No. 6, 35–44 (2007).

    Google Scholar 

  5. 5

    I. M. Gabbasova and R. R. Suleimanov, “Assessment of the state and reclamation of pyrogenically degraded peat soils,” Izv. Samar. Nauchn. Tsentra, Ross. Akad. Nauk 13 (1), 223–228 (2011).

    Google Scholar 

  6. 6

    T. V. Glukhova and A. A. Sirin, “Losses of soil carbon upon a fire on a drained forested raised bog,” Eurasian Soil Sci. 51, 542–549 (2018).

    Article  Google Scholar 

  7. 7

    O. G. Grishutkin, “Effect of fires in 2010 on wetland ecosystems of the Mordovia State Nature Reserve,” Tr. Mordovsk. Gos. Prirod. Zapoved. im. P.G. Smidovicha, No. 10, 261–265 (2012).

    Google Scholar 

  8. 8

    S. V. Gundar, Candidate’s Dissertation in Agriculture (Krasnoyarsk, 1978).

  9. 9

    T. T. Efremova, A. F. Avrova, and S. P. Efremov, “Spatial differentiation of carbon contents in peat soils of swampy spruce forests on the eastern slopes of Kuznetsk Alatau,” Lesovedenie, No. 4, 273–284 (2018).

    Article  Google Scholar 

  10. 10

    T. T. Efremova, A. F. Avrova, and S. P. Efremov, “Calculation of the carbon content in peat and moss litter of swamps from data on the ash content in the plant substrate,” Sib. Lesn. Zh., No. 6, 73–83 (2016).

  11. 11

    T. T. Efremova and S. P. Efremov, “Pyrogenic transformation of organic matter in soils of forest bogs,” Eurasian Soil Sci. 39, 1297–1305 (2006).

    Article  Google Scholar 

  12. 12

    T. T. Efremova and S. P. Efremov, “Peat fires as an ecological factor in the development of forest bog ecosystems,” Ekologiya, No. 5, 27–34 (1994).

    Google Scholar 

  13. 13

    F. R. Zaidel’man, D. I. Morozova, and A. P. Shvarov, “Changes in the properties of pyrogenic formations and vegetation on burnt previously drained peat soils of Poles’ie landscapes,” Eurasian Soil Sci. 36, 1159–1167 (2003).

    Google Scholar 

  14. 14

    F. R. Zaidel’man, D. I. Morozova, and A. P. Shvarov, “Dynamics of the chemical properties of pyrogenic formations after fires on drained lowmoor peat soils,” Vestn. Mosk. Univ., Ser. 17: Pochvoved., No. 1, 25–29 (2004).

  15. 15

    N. A. Kachinskii, Soil Physics (Vysshaya Shkola, Moscow, 1965) [in Russian].

    Google Scholar 

  16. 16

    J.-O. Kim and Ch. W. Mueller, Factor Analysis: Statistical Methods and Practical Issues (SAGE, Beverly Hills, CA, 1968; Finansy i Statistika, Moscow, 1989); W. R. Klecka, Discriminant Analysis (SAGE, Beverly Hills, CA, 1980; Finansy i Statistika, Moscow, 1989); M. S. Aldenderfer and R. K. Blashfield, Cluster Analysis (SAGE, Beverly Hills, CA, 1984; Finansy i Statistika, Moscow, 1989).

  17. 17

    L. L. Shishov, V. D. Tonkonogov, I. I. Lebedeva, and M. I. Gerasimova, Classification and Diagnostic System of Russian Soils (Oikumena, Smolensk, 2004) [in Russian].

    Google Scholar 

  18. 18

    T. A. Kopoteva and V. A. Kuptsova, “Effect of fires on the functioning of phytocenoses of peat bogs in the Middle Amur Lowland,” Russ. J. Ecol. 47, 11–18 (2016).

    Article  Google Scholar 

  19. 19

    N. P. Kurbatskii, N. N. Krasavina, and V. A. Zhdanko, Forest Soil Fires and Their Prevention (Leningrad, 1957) [in Russian].

    Google Scholar 

  20. 20

    A. O. Laikom and O. A. Golubina, “Degradation of eutrophic peat soils during fires by the example of the Tagan field,” Vestn. Tomsk. Gos. Pedagog. Univ., No. 8, 137–142 (2013).

  21. 21

    D. N. Lipatov, A. I. Shcheglov, D. V. Manakhov, and P. T. Brekhov, “Spatial heterogeneity in the properties of high-moor peat soils under local pyrogenesis in Northeastern Sakhalin,” Eurasian Soil Sci. 49, 238–250 (2016).

    Article  Google Scholar 

  22. 22

    K. S. Losev, “The natural-science basis of sustainable life,” Vestn. Ross. Akad. Nauk 73 (2), 110–116 (2003).

    Google Scholar 

  23. 23

    I. S. Melekhov, S. I. Dusha-Gudym, and E. P. Sergeeva, Forest Pyrology: Manual (Moscow State Forest Univ., Moscow, 2007) [in Russian].

    Google Scholar 

  24. 24

    World Reference Base for Soil Resources 2014, Update 2015, International Soil Classification System for Naming Soils and Creating Legends for Soil Maps, World Soil Resources Reports No. 106 (Food and Agriculture Organization, Rome, 2014; Moscow State Univ., Moscow, 2017).

  25. 25

    N. I. P’yavchenko, “Biogeocenotic regularities of the genesis of mires and dynamics of their vegetation cover,” in Genesis and Dynamics of Mires (Moscow State Univ., Moscow, 1978), pp. 13–18.

    Google Scholar 

  26. 26

    V. E. Rakovskii, F. L. Kaganovich, and E. A. Novichkova, Chemistry of Pyrogenic Processes (Academy of Sciences of Belarusian SSR, Minsk, 1959) [in Russian].

    Google Scholar 

  27. 27

    A. A. Sirin, D. A. Makarov, I. Gummert, A. A. Maslov, and Ya. I. Gul’be, “Depth of peat burning and carbon loss during an underground forest fire,” Contemp. Probl. Ecol. 13, 769–779 (2020).

    Article  Google Scholar 

  28. 28

    M. A. Sofronov and A. V. Volokitina, “Fires in swampy forests of Western Siberia,” in Hydromorphic Paludified ed Forest Ecosystems (Sukachev Institute of Forest, Krasnoyarsk, 1986), pp. 139–150.

    Google Scholar 

  29. 29

    M. A. Sofronov and A. V. Volokitina, Recommendations for Fire Protection of Southern-Taiga Paludified Forests in Siberia (Sukachev Institute of Forest, Siberian Branch, Russian Academy of Sciences, Krasnoyarsk, 2012) [in Russian].

  30. 30

    V. M. Fridland, Geography, Genesis, and Classification of Soils (Nauka, Moscow, 1986) [in Russian].

    Google Scholar 

  31. 31

    V. V. Furyaev, “Influence of groundwater level on fire danger in paludified and bog forests of the Ket’-Chulym interfluve,” in Forest Pyrology (Krasnoyarsk, 1970), pp. 186–220.

  32. 32

    A. A. Khalafyan, Statistica 6: Statistical Data Analysis (Binom-Press, Moscow, 2007) [in Russian].

    Google Scholar 

  33. 33

    B. W. Benscoter, D. Greenacre, and M. R. Turetsky, “Wildfire as a key determinant of peatland microtopography,” Can. J. For. Res. 45 (8), 1132–1136 (2015).

    Article  Google Scholar 

  34. 34

    B. Benscoter, K. Wieder, and D. H. Vitt, “Linking micro-topography with post-fire succession in bogs,” J. Veg. Sci. 16, 453–460 (2005).

    Article  Google Scholar 

  35. 35

    C. T. Dyrness and R. A. Norum, “The effects of experimental fires on black spruce forest floors in interior Alaska,” Can. J. For. Res. 13, 879–893 (1983).

    Article  Google Scholar 

  36. 36

    T. T. Efremova and S. P. Efremov, “Ecological effects of peat fire on forested bog ecosystems,” in Fire in Ecosystems of Boreal Eurasia (Kluwer, Dordrecht, 1996), pp. 350–357.

    Google Scholar 

  37. 37

    G. Giovannini, S. Lucchesi, and M. Giacheffi, “Soil aggregation and cementation as affected by heating,” in Proceedings of the XIII Congr. of the International Society of Soil Science, Hamburg, August 13–20, 1986 (Cambridge University Press, Cambridge, 1986), Vol. 2, pp. 58–59.

  38. 38

    Y. Hu, N. Fernandez-Anez, T. E. L. Smith, and G. Rein, “Review of emission from smouldering peat fire and their contribution to regional haze episodes,” Int. J. Wildland Fire 27, 293–312 (2018).

    Article  Google Scholar 

  39. 39

    X. Huang and G. Rein, “Downward spread of smouldering peat fire: the role of moisture, density and oxygen supply,” Int. J. Wildland Fire 26, 907–918 (2017).

    Article  Google Scholar 

  40. 40

    E. S. Kasischke and J. F. Johnstone, “Variation in post-fire organic layer thickness in a black spruce forest complex in Interior Alaska and its effects on soil temperature and moisture,” Can. J. For. Res. 35, 2164–2177 (2005).

    Article  Google Scholar 

  41. 41

    K. Miyanishi and E. A. Johnson, “Process and patterns of duff consumption in the mixwood boreal forest,” Can. J. For. Res. 32, 1285–1295 (2002).

    Article  Google Scholar 

  42. 42

    A. Pitkänen, J. Turunen, and K. Tolonen, “The role of fire in the carbon dynamics of a mire eastern Finland,” Holocene 9, 453–462 (1999).

    Article  Google Scholar 

  43. 43

    E.-S. Tuittila, M. Väliranta, J. Laine, and A. Korhola, “Quantifying patterns and controls of mire vegetation succession in a southern boreal bog using a combination of partial ordinations,” J. Veg. Sci. 18, 891–902 (2007).

    Article  Google Scholar 

  44. 44

    M. R. Turetsky, B. D. Amiro, E. Bosch, and J. S. Bhatti, “Historical burn area in western Canadian peatlands and its relationship to fire weather indices,” Global Biogeochem. Cycle 18, 1–9 (2004).

    Article  Google Scholar 

  45. 45

    M. R. Turetsky and R. K. Wieder, “A direct approach to quantifying organic matter lost as a result of peatland wildfire,” Can. J. For. Res. 31, 363–366 (2001).

    Article  Google Scholar 

  46. 46

    R. K. Wieder, K. D. Scott, K. K. Kamminga, M. A. Vile, D. H. Vitt, T. S. Bone, B. Xu, B. W. Benscoter, and J. S. Bhatti, “Postfire carbon balance in boreal bogs of Alberta, Canada,” Global Change Biol. 15, 63–81 (2009).

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to T. T. Efremova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by T. Chicheva

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Efremova, T.T., Pimenov, A.V., Efremov, S.P. et al. Forest Pyrogenic Peat Soils and Gleyzems in Swampy Mountain Valleys in the South of Yenisei Siberia. Eurasian Soil Sc. 54, 975–985 (2021).

Download citation


  • carbon losses
  • soil clusters
  • multivariate statistical analysis
  • forest-peat fires
  • passive smoldering