Skip to main content

Changes in the Past Soil-Forming Conditions and Human Activity in Soil Biological Memory: Microbial and Enzyme Components


The concept of biological memory of soils and cultural layers is developed. This term is understood as information about soil-forming conditions of the past that is carried by living organisms, their generative and dormant forms, dead and mineralized organisms and tissues, bioorganic compounds, low-molecular-weight and supramolecular products of microbial transformation of organic matter, and traces and products of the vital activity of living organisms in the soil profile. The structure of biological memory is considered, and the mechanisms of microbial soil memory are discussed in more detail. Microbial soil memory is defined as the ability of different groups of soil microbiota to change their structure, functional diversity, and biological activity under the impact of natural or anthropogenic factors and to preserve these changes. It is shown that changed in climatic conditions are reflected in the microbial memory of buried soils in the form of changes in the biomass and ecological-trophic structure of the soil microbial community. In addition to the microbial memory, cultural layers of ancient settlements and soils with traces of ancient anthropogenic transformation are characterized by the enzyme memory, which enables the reconstruction of the entry of nonspecific substrates primarily of anthropogenic nature into the soil. In the microbial memory, this is reflected in an increase in the number of microorganisms that specialize in the decomposition of particular substrate, while the enzyme memory reflects an increase in the activity of exo- and endoenzymes that participate in the utilization of this substrate by soil microorganisms. The established periods of functioning of microbial and enzyme memory of soils reach several thousand years.

This is a preview of subscription content, access via your institution.

Fig. 1.


  1. 1

    B. D. Abaturov, Mammals as a Component of Ecosystems (Nauka, Moscow, 1984) [in Russian].

    Google Scholar 

  2. 2

    M. M. Abramova, “On the efficiency of summer precipitation under conditions of arid climate,” Pochvovedenie, No. 9, 4–53 (1962).

    Google Scholar 

  3. 3

    A. L. Aleksandrovskii and E. I. Aleksandrovskaya, Evolution of Soils and the Geographic Environment (Nauka, Moscow, 2005) [in Russian].

    Google Scholar 

  4. 4

    A. L. Aleksandrovskii, M. A. Bronnikova, Yu. N. Vodyanitskii, M. I. Gerasimova et al., Soil Memory: Soil as a Memory of the Biosphere–Geosphere–Anthroposphere Interactions (LKI, Moscow, 2008) [in Russian].

    Google Scholar 

  5. 5

    T. V. Alekseeva, A. O. Alekseev, and P. I. Kalinin, “The Mississippian paleosols in the Brontsy quarry, Kaluga region,” Eurasian Soil Sci. 51, 744–757 (2018).

    Article  Google Scholar 

  6. 6

    A. M. Alpat’ev, “Soil moistening and biological effect of atmospheric precipitation,” Pochvovedenie, No. 2, 12–14 (1959).

    Google Scholar 

  7. 7

    E. A. Afanas’eva, Water-Salt Regime of Ordinary and Southern Chernozems in the Southeast of the European Part of the Soviet Union (Nauka, Moscow, 1980) [in Russian].

    Google Scholar 

  8. 8

    G. S. Bazykina, “Water regime and water balance in ameliorated soils of cultured biogeocenoses,” in Biogeocenotic Principles of Semidesert Development in the Northern Caspian Region (Nauka, Moscow, 1974) [in Russian].

    Google Scholar 

  9. 9

    M. V. Bobrovskii, Forest Soils of European Russia: Biotic and Anthropogenic Factors of Development (KMK, Moscow, 2010) [in Russian].

    Google Scholar 

  10. 10

    A. V. Borisov and R. A. Mimokhod, “Aridity: forms of manifestation and influence on the steppe zone population in the Bzonze Age,” Ross. Arkheol., No. 2, 48–60 (2017).

  11. 11

    O. V. Bukharin, A. L. Gintsburg, Yu. M. Romanova, and G. I. El’-Registan, Mechanisms of Bacterial Survival (Meditsina, Moscow, 2005) [in Russian].

    Google Scholar 

  12. 12

    M. B. Vainshtein and E. B. Kudryashova, “Nanobacteria,” Microbiology (Moscow) 69, 129–138 (2000).

    Article  Google Scholar 

  13. 13

    E. I. Gak, E. V. Chernysheva, A. K. Khodzhaeva, and A. V. Borisov, “The experience of identifying and systematization of the infrastructure characteristics of the settlement of the catacomb culture Rykan-3 in the forest steppe Don region,” Ross. Arkheol., No. 4, 19–28 (2014).

  14. 14

    A. A. Gol’eva, “Microbiomorphic memory of soils,” in Soil Memory: Soil as a Memory of the Biosphere–Geosphere–Anthroposphere Interactions (LKI, Moscow, 2008), pp. 500–529.

    Google Scholar 

  15. 15

    A. A. Gol’eva, Microbiomorphic Complexes of Natural and Anthropogenic Landscapes: Genesis, Geography, and Information Role (LKI, Moscow, 2008) [in Russian].

    Google Scholar 

  16. 16

    A. A. Gol’eva, Phytoliths and Their Information Role in Investigation of Natural and Archeological Objects (Moscow, 2001) [in Russian].

    Google Scholar 

  17. 17

    V. A. Demkin, Soil Science and Archeology (Department of Scientific-Technical Information, Pushchino, 1997) [in Russian].

    Google Scholar 

  18. 18

    T. S. Demkina, A. V. Borisov, and V. A. Demkin, “Microbial communities in the paleosols of archaeological monuments in the desert-steppe zone,” Eurasian Soil Sci. 33, 978–986 (2000).

    Google Scholar 

  19. 19

    T. S. Demkina, A. V. Borisov, V. A. Demkin, T. E. Khomutova, T. V. Kuznetsova, M. V. El’tsov, and S. N. Udal’tsov, “Paleoecological crisis in the steppes of the lower Volga region in the middle of the Bronze age (III–II centuries BC),” Eurasian Soil Sci. 50, 791–804 (2017).

    Article  Google Scholar 

  20. 20

    T. S. Demkina, A. V. Borisov, and T. E. Khomutova, “Comparative characteristics of recent and buried soil associations in the desert-steppe zone on the Volga–Don interfluve,” Eurasian Soil Sci. 52, 1321–1332 (2019).

    Article  Google Scholar 

  21. 21

    M. I. Dergacheva, “Humus memory of soils,” in Soil Memory: Soil as a Memory of the Biosphere–Geosphere–Anthroposphere Interactions (LKI, Moscow, 2008), pp. 530–560.

    Google Scholar 

  22. 22

    L. G. Dinesman, Steppe Biogeocenoses in the Holocene (Nauka, Moscow, 1977) [in Russian].

    Google Scholar 

  23. 23

    L. G. Dinesman, The Analysis of Biogeocenoses by Norms of Animals (Nauka, Moscow, 1968) [in Russian].

    Google Scholar 

  24. 24

    O. G. Zanina, “Fossil burrows of rodents from frozen Late Pleistocene deposits of the Kolyma Lowland,” Zool. Zh. 84 (6), 728–736 (2005).

    Google Scholar 

  25. 25

    D. G. Zvyagintsev, Soil and Microorganisms (Moscow State Univ., Moscow, 1987) [in Russian].

    Google Scholar 

  26. 26

    V. P. Zolotun, Doctoral Dissertation in Agriculture (Kiev, 1974).

  27. 27

    A. E. Ivanova, O. E. Marfenina, E. E. Kislova, and E. P. Zazovskaya, “Mycological characteristics of the cultural layer of a medieval settlement on soddy calcareous soils,” Eurasian Soil Sci. 39, 53–61 (2006).

    Article  Google Scholar 

  28. 28

    N. N. Kashirskaya, L. N. Plekhanova, E. V. Chernisheva, M. V. Eltsov, S. N. Udaltsov, and A. V. Borisov, “Temporal and spatial features of phosphatase activity in natural and human-transformed soils,” Eurasian Soil Sci. 53, 97–109 (2020).

    Article  Google Scholar 

  29. 29

    N. N. Kashirskaya, T. E. Khomutova, T. S. Demkina, and V. A. Demkin, “The microbial biomass in paleosols buried under kurgans and in recent soils in the steppe zone of the Lower Volga region,” Eurasian Soil Sci. 42, 536–542 (2009).

    Article  Google Scholar 

  30. 30

    V. A. Kovda and A. F. Bol’shakov, “Water-salt regime of soils in the central part of the Caspian Plain,” in Proceedings of the Conference on Soil Science and Plant Physiology (Saratov, 1937), Vol. 1, pp. 144–166.

  31. 31

    I. A. Krupenikov, Soil Cover of Moldova: Past, Present, Management, and Prediction (Shtiintsa, Chisinau, 1992) [in Russian].

    Google Scholar 

  32. 32

    O. E. Marfenina, Anthropogenic Ecology of Soil Fungi (Meditsina dlya Vsekh, Moscow, 2005) [in Russian].

  33. 33

    O. E. Marfenina, “Properties of soil microbiota as a form of biotic memory of soils,” in Soil Memory: Soil as a Memory of the Biosphere–Geosphere–Anthroposphere Interactions (LKI, Moscow, 2008), pp. 561–577.

    Google Scholar 

  34. 34

    O. E. Marfenina, E. V. Gorbatovskaya, and M. V. Gorlenko, “Mycological characterization of the occupation deposits in excavated medieval Russian settlements,” Microbiology (Moscow) 70, 738–742 (2001).

    Article  Google Scholar 

  35. 35

    O. E. Marfenina, A. E. Ivanova, E. E. Kislova, I. Yu. Chernov, and E. P. Zazovskaya, “Fungal communities in the soils of early medieval settlements in the taiga zone,” Eurasian Soil Sci. 41, 749–758 (2008).

    Article  Google Scholar 

  36. 36

    E. N. Mishustin, Natural and Laboratory Thermophilic Microorganisms (Izd. Akad, Nauk SSSR, Moscow, 1950) [in Russian].

    Google Scholar 

  37. 37

    A. V. Potapova, V. N. Pinskoi, E. I. Gak, N. N. Kashirskaya, and A. V. Borisov, “Variability of the properties of cultural layer of the Bronze Age settlement Ksizovo-1 in the forest-steppe Don region,” Ross. Arkheol., No. 1, 60–75 (2020).

  38. 38

    A. A. Rode, “Water regime and balance of virgin soils of semidesert complex,” in Water Balance of Semidesert Soils (Academy of Sciences of USSR, Moscow, 1963), pp. 5–83.

    Google Scholar 

  39. 39

    Z. A. Savost’yanova and V. D. Nashchokin, “History of soil cover of the steppe zone of Khakassia,” in Soil Conditions of Cultivation of Protective Forest Plantations (Krasnoyarsk, 1974), pp. 7–35.

  40. 40

    A. Yu. Sergeev and E. Yu. Lebedeva, “Early Alanian agriculture: finds of cultivated and weed plants in the Podkumskoe-2 fortification (2nd-4th centuries AD),” Kratk. Soobshch. Inst. Arkheol., No. 249-2, 311–328 (2017).

  41. 41

    V. O. Targulian, “Some theoretical problems of pedology as a science about the Earth,” Pochvovedenie, No. 12, 107–116 (1986).

    Google Scholar 

  42. 42

    V. O. Targulian, “Soil memory: development, objects, and spatio-temporal diversity,” in Soil Memory: Soil as a Memory of the Biosphere–Geosphere–Anthroposphere Interactions (LKI, Moscow, 2008), pp. 23–57.

    Google Scholar 

  43. 43

    V. O. Targulian and M. A. Bronnikova, “Soil memory: theoretical basics of the concept, its current state, and prospects for development,” Eurasian Soil Sci, 52 (3), 229–243 (2019).

    Article  Google Scholar 

  44. 44

    V. O. Targulian and I. A. Sokolov, “Structural and functional approach to soil: soil-memory and soil-moment,” in Mathematical Modeling in Ecology (Nauka, Moscow, 1978), pp. 17–33.

    Google Scholar 

  45. 45

    V. O. Targulian and T. A. Sokolova, “Soil as a biotic/abiotic natural system: a reactor, memory, and regulator of biospheric interactions,” Eurasian Soil Sci. 29, 30–41 (1996).

    Google Scholar 

  46. 46

    A. D. Temraleeva, S. V. Moskalenko, M. V. El’tsov, I. M. Vagapov, A. Y. Ovchinnikov, L. A. Gugalinskaya, V. M. Alifanov, and D. L. Pinskii, “Stability and morphological and molecular-genetic identification of algae in buried soils,” Eurasian Soil Sci. 50, 952–960 (2017).

    Article  Google Scholar 

  47. 47

    G. N. Fedotov and V. S. Shalaev, “Nature of humic substances,” Lesn. Vestn., No. 7, 105–110 (2013).

  48. 48

    T. E. Khomutova and V. A. Demkin, “Assessment of the microbial biomass using the content of phospholipids in soils of the dry steppe,” Eurasian Soil Sci. 44, 686–692 (2011).

    Article  Google Scholar 

  49. 49

    T. E. Khomutova, T. S. Demkina, A. V. Borisov, and N. I. Shishlina, “State of microbial communities in paleosols buried under kurgans of the desert-steppe zone in the Middle Bronze Age (27th–26th centuries BC) in relation to the dynamics of climate humidity”, Eurasian Soil Sci. 50, 229–238 (2017).

    Article  Google Scholar 

  50. 50

    T. E. Khomutova, T. S. Demkina, and V. A. Demkin, “Estimation of the total and active microbial biomasses in buried subkurgan paleosoils of different age,” Microbiology (Moscow) 73, 196–201 (2004).

    Article  Google Scholar 

  51. 51

    T. I. Chernov, A. D. Zhelezova, O. V. Kutovaya, A. K. Tkhakakhova, N. A. Bgazhba, F. G. Kurbanova, A. O. Makeev, T. A. Puzanova, A. V. Rusakov, and O. S. Khokhlova, “Comparative analysis of the structure of buried and surface soils by analysis of microbial DNA,” Microbiology (Moscow) 87, 833–841 (2018).

    Article  Google Scholar 

  52. 52

    E. V. Chernysheva, N. N. Kashirskaya, E. V. Demkina, D. S. Korobov, and A. V. Borisov, “Thermophilic microorganisms in soils as a result of ancient human activity,” Microbiology (Moscow) 88, 646–648 (2019).

    Article  Google Scholar 

  53. 53

    E. V. Chernysheva, N. N. Kashirskaya, D. S. Korobov, and A. V. Borisov, “Biological activity of soddy-calcareous soils and cultural layers in Alanian settlements of the Kislovodsk basin,” Eurasian Soil Sci. 47, 884–891 (2014).

    Article  Google Scholar 

  54. 54

    M. V. Bobrovsky, D. A. Kupriaynov, and L. G. Khanina, “Anthracological and morphological analysis of soils for the reconstruction of the forest ecosystem history (Meshchera Lowlands, Russia),” Quat. Int. 516, 70–82 (2019).

    Article  Google Scholar 

  55. 55

    C. Carcaillet and M. Thinon, “Pedoanthracological contribution to the study of the evolution of the upper treeline in the Maurienne Valley (North French Alps): methodology and preliminary data,” Rev. Palaeobot. Palynol. 91 (1–4), 399–416 (1996).

    Article  Google Scholar 

  56. 56

    D. P. Chandler, F. J. Brockman, T. J. Bailey, and J. K. Fredrickson, “Phylogenetic diversity of archaea and bacteria in a deep subsurface paleosol,” Microb. Ecol. 36, 37–50 (1998).

    Article  Google Scholar 

  57. 57

    E. Chernysheva, T. Khomutova, F. Fornasier, T. Kuznetsova, and A. Borisov, “Effects of long-term medieval agriculture on soil properties: a case study from the Kislovodsk basin, Northern Caucasus, Russia,” J. Mt. Sci. 15 (6), 1171–1185 (2018).

    Article  Google Scholar 

  58. 58

    E. Chernysheva, D. Korobov, and A. Borisov, “Thermophilic microorganisms in arable land around medieval archaeological sites in Northern Caucasus, Russia: novel evidence of past manuring practices,” Geoarchaeology 32, 494–501 (2017).

    Article  Google Scholar 

  59. 59

    E. V. Chernysheva, D. S. Korobov, T. E. Khomutova, and A. V. Borisov, “Urease activity in cultural layers at archaeological sites,” J. Archaeol. Sci. 57, 24–31 (2015).

    Article  Google Scholar 

  60. 60

    M. Dergacheva, I. Fedeneva, N. Bazhina, O. Nekrasova, and V. Zenin, “Shestakovo site of Western Siberia (Russia): pedogenic features, humic substances and paleoenvironment reconstructions for last 20–25 ka,” Quat. Int. 420, 199–207 (2016).

    Article  Google Scholar 

  61. 61

    R. P. Dick, J. A. Şandor, and N. S. Eash, “Soil enzyme activities after 1500 years of terrace agriculture in the Colca Valley, Peru,” Agric., Ecosyst. Environ. 50, 123–131 (1994).

    Article  Google Scholar 

  62. 62

    R. Enevold, P. Rasmussen, M. Løvschal, J. Olsen, and B. Vad Odgaard, “Circumstantial evidence of non-pollen palynomorph palaeoecology: a 5.500 year NPP record from forest hollow sediments compared to pollen and macrofossil inferred palaeoenvironments,” Veg. Hist. Archaeobot. 28, 105–121 (2019).

    Article  Google Scholar 

  63. 63

    E. G. Ershova, A. L. Alexandrovskiy, and N. A. Krenke, “Paleosols, paleovegetation and neolithic occupation of the Moskva River floodplain, Central Russia,” Quat. Int. 324, 134–145 (2014).

    Article  Google Scholar 

  64. 64

    R. P. Evershed, “Organic residue analysis in archaeology: the archaeological biomarker revolution,” Archaeometry 50 (6), 895–924 (2008).

    Article  Google Scholar 

  65. 65

    A. Golyeva and N. Svirida, “Quantitative distribution of phytoliths as reliable diagnostical criteria of ancient arable lands,” Quat. Int. 434, 51–57 (2017).

    Article  Google Scholar 

  66. 66

    A. Ivanova and O. Marfenina, “Soil fungal communities as bioindicators of ancient human impacts in medieval settlements in different geographic regions of Russia and southwestern Kazakhstan,” Quat. Int. 365, 212–222 (2015).

    Article  Google Scholar 

  67. 67

    N. Kashirskaya, A. Kleshchenko, R. A. Mimokhod, and A. Borisov, “Microbiological approach for identification of wool clothes in ancient burials,” J. Archaeol. Sci.: Rep. 31, (2020).

  68. 68

    T. E. Khomutova, N. N. Kashirskaya, T. S. Demkina, T. V. Kuznetsova, F. Fornasier, N. I. Shishlina, and A. V. Borisov, “Precipitation pattern during warm and cold periods in the Bronze Age (around 4.5–3.8 ka BP) in the desert steppes of Russia: soil-microbiological approach for palaeoenvironmental reconstruction,” Quat. Int. 507, 84–94 (2019).

    Article  Google Scholar 

  69. 69

    A. Makeev, E. Aseyeva, A. Rusakov, K. Sorokina, T. Puzanova, O. Khokhlova, P. Kust, F. Kurbanova, T. Chernov, O. Kutovaya, M. Lebedeva, and E. Mihailov, “The environment of the Early Iron Age at the southern fringe of the forest zone of the Russian Plain,” Quat. Int. 502, 218–237 (2018).

    Article  Google Scholar 

  70. 70

    O. E. Marfenina, A. E. Ivanova, E. E. Kislova, and D. S. Sacharov, “The mycological properties of medieval culture layers as a form of soil ‘biological memory’ about urbanization,” J. Soils Sediments 8, 340–348 (2008).

    Article  Google Scholar 

  71. 71

    R. Margesin, J. A. Siles, T. Cajthaml, B. Öhlinger, and E. Kistler, “Microbiology meets archaeology: soil microbial communities reveal different human activities at Archaic Monte Iato (sixth century BC),” Microb. Ecol. 73 (4), 925–938 (2016).

    Article  Google Scholar 

  72. 72

    E. Marinova, V. Linseele, and M. Kühn, “Bioarchaeological research on animal dung – possibilities and limitations,” J. Environ. Archaeol. 18 (1), 1–3 (2013).

    Article  Google Scholar 

  73. 73

    A. V. Mitusov, O. E. Mitusova, K. Pustovoytov, C. C.‑M. Lubos, S. Dreibrodt, and H.-R. Bork, “Palaeoclimatic indicators in soils buried under archaeological monuments in the Eurasian steppe: a review,” Holocene 19, 1153–1160 (2009).

    Article  Google Scholar 

  74. 74

    P. Moore, J. Webb, and M. Collison, Pollen Analysis (Blackwell, Oxford, 1991).

    Google Scholar 

  75. 75

    P. Nannipieri, E. Kandeler, and P. Ruggiero, “Enzyme activities and microbiological and biochemical processes in soil,” in Enzymes in the Environment: Activity, Ecology, and Applications (Marcel Dekker, New York, 2002), pp. 1–33.

    Google Scholar 

  76. 76

    E. Yu. Novenko, A. N. Tsyganov, E. M. Volkova, D. A. Kupriyanov, I. V. Mironenko, K. V. Babeshko, A. S. Utkina, V. Popov, and Yu. A. Mazei, “Mid- and Late Holocene vegetation dynamics and fire history in the boreal forest zone of European Russia: a case study from the south-eastern part of Meschera Lowlands,” Palaeogeogr., Palaeoclimatol., Palaeoecol. 459, 570–584 (2016).

    Article  Google Scholar 

  77. 77

    E. Yu. Novenko, A. N. Tsyganov, N. G. Mazei, D. A. Kupriyanov, O. V. Rudenko, M. V. Bobrovsky, N. M. Erman, and V. A. Nizovtsev, “Palaeoecological evidence for climatic and human impacts on vegetation in the temperate deciduous forest zone of European Russia during the last 4200 years: a case study from the Kaluzhskiye Zaseki Nature Reserve,” Quat. Int. 516, 58–69 (2019).

    Article  Google Scholar 

  78. 78

    T. Nyström, “Not quite dead enough: on bacterial life, culturability, senescence, and death,” Arch. Microbiol. 176, 159–164 (2001).

    Article  Google Scholar 

  79. 79

    M. Patchaye, B. Sundarkrishnan, S. Tamilselvan, and N. Sakthivel, “Microbial management of organic waste in agroecosystem,” in Microorganisms for Green Revolution, Vol. 2: Microbes for Sustainable Agro-Ecosystem (Springer-Verlag, Singapore, 2018), pp. 45–74.

  80. 80

    S. Peters, N. V. Borisov, S. Reinhold, D. Korobov, and H. Thiemeyer, “Microbial characteristics of soils depending on the human impact on archaeological sites in the Northern Caucasus,” Quat. Int. 324 (4), 162–171 (2014).

    Article  Google Scholar 

  81. 81

    A. Rosen, “Phytolith analysis,” in Encyclopedia of Archaeology (Academic, San Diego, 2008), pp. 1818–1822.

  82. 82

    D. B. Roszak and R. R. Colwell, “Survival strategies of bacteria in the natural environment,” Microbiol. Rev. 51, 365–379 (1987).

    Article  Google Scholar 

  83. 83

    N. Ryabogina, A. Borisov, I. Idrisov, and M. Bakushev, “Holocene environmental history and populating of mountainous Dagestan (Eastern Caucasus, Russia),” Quat. Int. 516, 111–126 (2019).

    Article  Google Scholar 

  84. 84

    L. Sadori, Postglacial pollen records from Southern Europe, Reference Module in Earth Systems and Environmental Sciences, 2014.

  85. 85

    T. Shi, R. H. Reeves, D. A. Gilichinsky, and E. I. Friedmann, “Characterization of viable bacteria in Siberian permafrost by 16S rDNA sequencing,” Microbiol. Ecol. 33, 169–179 (1997).

    Article  Google Scholar 

  86. 86

    J. J. Skujins, “Extracellular enzymes in soil,” Crit. Rev. Microbiol. 4, 383–421 (1976).

    Article  Google Scholar 

  87. 87

    V. Trunova, V. Zvereva, N. Polosmak, D. Kochubey, V. Kriventsov, and K. Kuper, “Investigation of organic materials from the ‘royal’ burials of Xiongnu (Noin-Ula, Mongolia) by SRXRF and XAFS methods,” Archaeometry 57 (6), 1060–1077 (2015).

    Article  Google Scholar 

  88. 88

    I. Tunno and S. Mensing, “The value of non-pollen palynomorphs in interpreting paleoecological change in the Great Basin (Nevada, USA),” Quat. Res. 87, 529–543 (2017).

    Article  Google Scholar 

  89. 89

    A. van der Wal, J. A. van Veen, W. Smant, H. T. S. Boschker, J. Bloem, P. Kardol, W. H. van der Putten, and W. De Boer, “Fungal biomass development in a chronosequence of land abandonment,” Soil Biol Biochem. 38, 51–60 (2006).

    Article  Google Scholar 

  90. 90

    I. C. C. von Holstein, K. E. H. Penkman, E. E. Peacock, and M. J. Collins, “Wet degradation of keratin proteins: linking amino acid, elemental and isotopic composition,” Rapid Commun. Mass Spectrom. 28 (19), 2121–2133 (2014).

    Article  Google Scholar 

  91. 91

    T. Wilkinson, “The definition of ancient manured zones by means of extensive shred-sampling techniques,” J. Field Archaeol. 9, 323–333 (1982).

    Google Scholar 

  92. 92

    C. A. Williams, L. V. Hills, and F. F. Krause, “Preserved organic matter and miospores in buried Middle Devonian (Givetian) paleosols: indicators of weathering, oxidation and maturity,” Catena 28 (1–2), 1–19 (1996).

    Article  Google Scholar 

  93. 93

    R. Zornoza, C. Guerrero, J. Mataix-Solera, K. M. Scow, V. Arcenegui, and J. Mataix-Beneyto, “Changes in soil microbial community structure following the abandonment of agricultural terraces in mountainous areas of Eastern Spain,” Appl. Soil Ecol. 42, 315–323 (2009).

    Article  Google Scholar 

Download references


The authors are grateful to the reviewers of the article for their constructive comments and advice, which significantly improved the structure and information level of the published work.


The study of paleosols of burial mounds was performed according to the State Assignment no. 0191-2019-0046. Microbiological studies of soils and cultural layers of the settlements were supported by the Russian Science Foundation, project no. 19-18-00406.

Author information



Corresponding author

Correspondence to E. V. Chernysheva.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by I. Bel’chenko

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Borisov, A.V., Demkina, T.S., Kashirskaya, N.N. et al. Changes in the Past Soil-Forming Conditions and Human Activity in Soil Biological Memory: Microbial and Enzyme Components. Eurasian Soil Sc. 54, 1078–1088 (2021).

Download citation


  • microbial community
  • enzyme activity
  • buried soils