Skip to main content
Log in

Impacts of Slope and Longitudinal Ridge on Soil Organic Carbon Dynamics in the Typical Mollisols Sloping Farmland (China)

  • DEGRADATION, REHABILITATION, AND CONSERVATION OF SOILS
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

Soil organic carbon (SOC) plays an important role in preserving soil fertility. Assessing how topographic factors (slope gradient, slope length, slope shape, and slope position) and their interactions influence the SOC dynamics in the surface soil of longitudinal ridges of sloping farmland is very important for Mollisols protection in Northeast China. The SOC contents and variations were quantified within classes of topographic factors. A total of 39 soil samples were collected at the same sampling points in 13 typical Mollisol sloping farmland in 2004 and 2016. The results indicated that the average annual decrease rate of SOC from 2004 to 2016 was 5.64‰. The SOC stocks were significantly affected by slope gradient, slope length, and slope shape, but only affected by the interaction between slope gradient and slope position. In addition, the SOC stocks decreased with increasing slope gradient (p < 0.05). The variation in SOC stocks during 12 years showed a decreasing trend with increasing slope length (p < 0.05). The straight slopes had higher variation in SOC stocks than concave and convex slopes (p > 0.05); the footslope had higher SOC content than the upper and middle slope (p > 0.05), corresponding to the soil erosion and deposition along the slope. Our findings could offer suggestions for future landscape management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. J. An, F. L. Zheng, and B. Wang, “Using 137Cs technique to investigate the spatial distribution of erosion and deposition regimes for a small catchment in the black soil region, Northeast China,” Catena 123, 243–251 (2014). https://doi.org/10.1016/j.catena.2014.08.009

    Article  Google Scholar 

  2. Y. X. Bai and Y. C. Zhou, “The main factors controlling spatial variability of soil organic carbon in a small karst watershed, Guizhou Province, China,” Geoderma 357, 113938 (2020). https://doi.org/10.1016/j.geoderma.2019.113938

    Article  Google Scholar 

  3. Y. Q. Chen, S. Q. Yu, S. P. Liu, X. L. Wang, Y. Zhang, T. Liu, L. X. Zhou, W. X. Zhang, and S. L. Fu, “Reforestation makes a minor contribution to soil carbon accumulation in the short term: evidence from four subtropical plantations,” For. Ecol. Manage. 384, 400–405 (2017). https://doi.org/10.1016/j.foreco.2016.10.053

    Article  Google Scholar 

  4. S. L. Cheng, H. J. Fang, T. H. Zhu, J. J. Zheng, X. M. Yang, X. P. Zhang. and G. R. Yu, “Effects of soil erosion and deposition on soil organic carbon dynamics at a sloping field in Black Soil region, Northeast China,” Soil Sci. Plant Nutr. 56 (4), 521–529 (2010). https://doi.org/10.1111/j.1747-0765.2010.00492.x

    Article  Google Scholar 

  5. O. V. Chernova, I. M. Ryzhova, and M. A. Podvezennaya, “Assessment of organic carbon stocks in forest soils on a regional scale,” Eurasian Soil Sci. 53, 339–348 (2020). https://doi.org/10.1134/s1064229320030023

    Article  Google Scholar 

  6. E. A. de Nijs and E. L. H. Cammeraat, “The stability and fate of soil organic carbon during the transport phase of soil erosion,” Earth-Science Rev. 201, 103067 (2020). https://doi.org/10.1016/j.earscirev.2019.103067

    Article  Google Scholar 

  7. L. Deng, K. B. Wang, Z. S. Tang, and Z. P. Shangguan, “Soil organic carbon dynamics following natural vegetation restoration: evidence from stable carbon isotopes (δ13C),” Agric. Ecosyst. Environ. 221, 235–244 (2016). https://doi.org/10.1016/j.agee.2016.01.048

    Article  Google Scholar 

  8. D. Deumlich, R. H. Ellerbrock, and M. Frielinghaus, “Estimating carbon stocks in young moraine soils affected by erosion,” Catena 162, 51–60 (2018). https://doi.org/10.1016/j.catena.2017.11.016

    Article  Google Scholar 

  9. F. Ding, Y. L. Hu, L. J. Li, A. Li, S. W. Shi, P. Y. Lian, and D. H. Zeng, “Changes in soil organic carbon and total nitrogen stocks after conversion of meadow to cropland in Northeast China,” Plant Soil 373 (1–2), 659–672 (2013). https://doi.org/10.1007/s11104-013-1827-5

    Article  Google Scholar 

  10. S. Doetterl, A. A. Berhe, E. Nadeu, Z. G. Wang, M. Sommer, and P. Fiener, “Erosion, deposition and soil carbon: a review of process-level controls, experimental tools and models to address C cycling in dynamic landscapes,” Earth-Sci. Rev. 154, 102–122 (2016). https://doi.org/10.1016/j.earscirev.2015.12.005

    Article  Google Scholar 

  11. M. M. Fan, R. Lal, H. Zhang, A. J. Margenot, J. T. Wu, P. B. Wu, L. M. Zhang, J. T. Yao, F. R. Chen, and C. Gao, “Variability and determinants of soil organic matter under different land uses and soil types in eastern China,” Soil Tillage Res. 198, 104544 (2020). https://doi.org/10.1016/j.still.2019.104544

    Article  Google Scholar 

  12. H. J. Fang, X. M. Yang, X. P. Zhang, and A. Z. Liang, “Using 137Cs tracer technique to evaluate erosion and deposition of black soil in Northeast China,” Pedosphere 16 (2), 201–209 (2006).

    Article  Google Scholar 

  13. H. Y. Fang, L. Y. Sun, D. L. Qi, and Q. G. Cai, “Using 137Cs technique to quantify soil erosion and deposition rates in an agricultural catchment in the black soil region, Northeast China,” Geomorphology 169–170, 142–150 (2012). https://doi.org/10.1016/j.geomorph.2012.04.019

    Article  Google Scholar 

  14. H. Y. Fang, Q. Y. Li, L. Y. Sun, and Q. G. Cai, “Using 137Cs to study spatial patterns of soil erosion and soil organic carbon (SOC) in an agricultural catchment of the typical black soil region, Northeast China,” J. Environ. Radioact. 112, 125–132 (2012). https://doi.org/10.1016/j.jenvrad.2012.05.018

    Article  Google Scholar 

  15. J. Y. Fang, G. R. Yu, L. L. Liu, S. J. Hu, and F. S. Chapin, “Climate change, human impacts, and carbon sequestration in China,” Proc. Natl. Acad. Sci. U.S.A. 115 (16), 4015–4020 (2018). https://doi.org/10.1073/pnas.1700304115

    Article  Google Scholar 

  16. C. Fissore, B. J. Dalzell, A. A. Berhe, M. A. Voegtle, M. A. Evans, and A. Wu, “Influence of topography on soil organic carbon dynamics in a Southern California grassland,” Catena 149, 140–149 (2017). https://doi.org/10.1016/j.catena.2016.09.016

    Article  Google Scholar 

  17. I. Funes, R. Savé, P. Rovira, R. Molowny-Horas, J. M. Alcañiz, E. Ascaso, I. Herms, C. Herrero, J. Boixadera, and J. Vayreda, “Agricultural soil organic carbon stocks in the north-eastern Iberian Peninsula: Drivers and spatial variability,” Sci. Total Environ. 668, 283–294 (2019). https://doi.org/10.1016/j.scitotenv.2019.02.317

    Article  Google Scholar 

  18. L. Gaspar, L. Mabit, I. Lizaga, and A. Navas, “Lateral mobilization of soil carbon induced by runoff along karstic slopes,” J. Environ. Manage. 260, 11 (2020). https://doi.org/10.1016/j.jenvman.2020.110091

    Article  Google Scholar 

  19. L. Gaspar, L. Quijano, I. Lizaga, and A. Navas, “Effects of land use on soil organic and inorganic C and N at 137Cs traced erosional and depositional sites in mountain agroecosystems,” Catena 181, 104058 (2019). https://doi.org/10.1016/j.catena.2019.05.004

    Article  Google Scholar 

  20. G. R. Hancock, V. Kunkel, T. Wells, and C. Martinez, “Soil organic carbon and soil erosion—Understanding change at the large catchment scale,” Geoderma 343, 60–71 (2019). https://doi.org/10.1016/j.geoderma.2019.02.012

    Article  Google Scholar 

  21. X. D. Huang, D. Wang, P. P. Han, W. C. Wang, Q. J. Li, X. L. Zhang, M. W. Ma, B. J. Li, and S. J. Han, “Spatial patterns in baseflow mean response time across a watershed in the loess plateau: linkage with land-use types,” For. Sci. 66 (3), 382–391 (2020). https://doi.org/10.1093/forsci/fxz084

    Article  Google Scholar 

  22. F. M. S. A. Kirkels, L. H. Cammeraat, and N. J. Kuhn, “The fate of soil organic carbon upon erosion, transport and deposition in agricultural landscapes—A review of different concepts,” Geomorphology 226, 94–105 (2014). https://doi.org/10.1016/j.geomorph.2014.07.023

    Article  Google Scholar 

  23. J. Kobler, B. Zehetgruber, T. Dirnböck, R. Jandl, M. Mirtl, and A. Schindlbacher, “Effects of aspect and altitude on carbon cycling processes in a temperate mountain forest catchment,” Landscape Ecol. 34 (2), 325–340 (2019). https://doi.org/10.1007/s10980-019-00769-z

    Article  Google Scholar 

  24. R. Lal, “Soil carbon sequestration impact on global climate change and food security,” Science 304 (5677), 1623–1627 (2004). https://doi.org/10.1126/science.1097396

    Article  Google Scholar 

  25. R. Lal, “Soil degradative effects of slope length and tillage method on alfisols in Western Nigeria. II. Soil chemical properties, plant nutrient loss and water quality,” Land Degrad. Dev. 8 (3), 221–244 (1997). https://doi.org/10.1002/(sici)1099-145x(199709)8:3<221::Aid-ldr254>3.0.Co;2-p

    Article  Google Scholar 

  26. T. Li, H. C. Zhang, X. Y. Wang, S. L. Cheng, H. J. Fang, G. Liu, and W. P. Yuan, “Soil erosion affects variations of soil organic carbon and soil respiration along a slope in Northeast China,” Ecol. Process. 8 (1), 28 (2019). https://doi.org/10.1186/s13717-019-0184-6

    Article  Google Scholar 

  27. X. Li, G. W. McCarty, D. L. Karlen, C. A. Cambardella, and W. Effland, “Soil organic carbon and isotope composition response to topography and erosion in Iowa,” J. Geophys. Res.: Biogeosci. 123 (12), 3649–3667 (2018). https://doi.org/10.1029/2018jg004824

    Article  Google Scholar 

  28. Y. Li, Q. W. Zhang, D. C. Reicosky, M. J. Lindstrom, L. Y. Bai, and L. Li, “Changes in soil organic carbon induced by tillage and water erosion on a steep cultivated hillslope in the Chinese Loess Plateau from 1898–1954 and 1954–1998,” J. Geophys. Res.: Biogeosci. 112 (1), 10 (2007). https://doi.org/10.1029/2005jg000107

    Article  Google Scholar 

  29. Z. W. Li, C. Liu, Y. T. Dong, X. F. Chang, X. D. Nie, L. Liu, H. B. Xiao, Y. M. Lu and G. M. Zeng “Response of soil organic carbon and nitrogen stocks to soil erosion and land use types in the Loess hilly–gully region of China,” Soil Tillage Res. 166, 1–9 (2017). https://doi.org/10.1016/j.still.2016.10.004

    Article  Google Scholar 

  30. Z. W. Li, Y. M. Lu, X. D. Nie, B. Huang, W. M. Ma, C. Liu, and H. B. Xiao, “Variability of beryllium-7 and its potential for documenting soil and soil organic carbon redistribution by erosion,” Soil Sci. Soc. Am. J. 80 (3), 693–703 (2016). https://doi.org/10.2136/sssaj2015.11.0392

    Article  Google Scholar 

  31. A. Z. Liang, X. P. Zhang, X. M. Yang, N. B. Mclaughlin, Y. Shen, and W. F. Li, “Estimation of total erosion in cultivated black soils in northeast China from vertical profiles of soil organic carbon,” Eur. J. Soil Sci. 60 (2), 223–229 (2009). https://doi.org/10.1111/j.1365-2389.2008.01100.x

    Article  Google Scholar 

  32. B. Y. Liu, B. X. Yan, B. Shen, Z. Q. Wang, and X. Wei, “Current status and comprehensive control strategies of soil erosion for cultivated land in the Northeastern black soil area of China,” Sci. Soil Water Conserv. 6 (1), 1–8 (2008).

    Google Scholar 

  33. H. Liu, T. Zhang, B. Liu, G. Liu, and G. V. Wilson, “Effects of gully erosion and gully filling on soil depth and crop production in the black soil region, northeast China,” Environ. Earth Sci. 68 (6), 1723–1732 (2013). https://doi.org/10.1007/s12665-012-1863-0

    Article  Google Scholar 

  34. X. B. Liu, C. L. Burras, Y. S. Kravchenko, A. Duran, T. Huffman, H. Morras, G. Studdert, X. Y. Zhang, R. M. Cruse, and X. H. Yuan, “Overview of mollisols in the world: distribution, land use and management,” Can. J. Soil Sci. 92 (3), 383–402 (2012). https://doi.org/10.4141/cjss2010-058

    Article  Google Scholar 

  35. X. B. Liu, S. L. Zhang, X. Y. Zhang, G. W. Ding, and R. M. Cruse, “Soil erosion control practices in Northeast China: a mini-review,” Soil Tillage Res. 117, 44–48 (2011). https://doi.org/10.1016/j.still.2011.08.005

    Article  Google Scholar 

  36. Y. Liu, Z. Q. Dang, F. P. Tian, D. Wang, and G. L. Wu, “Soil organic carbon and inorganic carbon accumulation along a 30-year grassland restoration chronosequence in semi-arid regions (China),” Land Degrad. Dev. 28 (1), 189–198 (2017). https://doi.org/10.1002/ldr.2632

    Article  Google Scholar 

  37. C. Luca, B. C. Si, and R. E. Farrell, “Upslope length improves spatial estimation of soil organic carbon content,” Can. J. Soil Sci. 87 (3), 291–300 (2007). https://doi.org/10.4141/cjss06012

    Article  Google Scholar 

  38. S. B. Maïga-Yaleu, P. Chivenge, H. Yacouba, I. Guiguemde, H. Karambiri, O. Ribolzi, A. Bary, and V. Chaplot, “Impact of sheet erosion mechanisms on organic carbon losses from crusted soils in the Sahel,” Catena 126, 60–67 (2015). https://doi.org/10.1016/j.catena.2014.11.001

    Article  Google Scholar 

  39. M. N. Maslov, O. A. Maslova, and E. I. Kopeina, “Changes in the pools of total and labile soil organic carbon during post-fire succession in the Khibiny Mountain tundra ecosystems,” Eurasian Soil Sci. 53, 330–338 (2020). https://doi.org/10.1134/s1064229320030047

    Article  Google Scholar 

  40. R. H. Miao, J. Ma, Y. Z. Liu, Y. C. Liu, Z. L. Yang, and M. X. Guo, “Variability of aboveground litter inputs alters soil carbon and nitrogen in a coniferous-broadleaf mixed forest of Central China,” Forests 10 (2), 188 (2019). https://doi.org/10.3390/f10020188

    Article  Google Scholar 

  41. Z. H. Miao, Z. M. Wang, K. S. Song, C. H. Zhang, and C. Y. Ren, “Spatial and temporal variability of soil organic carbon in the Corn Belt of Northeastern China, 1980s–2005: a case study in four counties,” Comm. Soil Sci. Plant Anal. 45 (2), 163–176 (2014). https://doi.org/10.1080/00103624.2013.854376

    Article  Google Scholar 

  42. B. A. Miheretu and A. A. Yimer, “Spatial variability of selected soil properties in relation to land use and slope position in Gelana sub-watershed, Northern highlands of Ethiopia,” Phys. Geogr. 39 (3), 230–245 (2018). https://doi.org/10.1080/02723646.2017.1380972

    Article  Google Scholar 

  43. M. Fazlollahi Mohammadi, S. G. H. Jalali, Y. Kooch, and D. Said-Pullicino, “Slope gradient and shape effects on soil profiles in the northern mountainous forests of Iran,” Eurasian Soil Sci. 49, 1366–1374 (2016). https://doi.org/10.1134/s1064229316120061

    Article  Google Scholar 

  44. M. Fazlollahi Mohammadi, S. G. Jalali, Y. Kooch, and D. Said-Pullicino, “The effect of landform on soil microbial activity and biomass in a Hyrcanian oriental beech stand,” Catena 149, 309–317 (2017). https://doi.org/10.1016/j.catena.2016.10.006

    Article  Google Scholar 

  45. K. Nabiollahi, F. Golmohamadi, R. Taghizadeh-Mehrjardi, R. Kerry, and M. Davari, “Assessing the effects of slope gradient and land use change on soil quality degradation through digital mapping of soil quality indices and soil loss rate,” Geoderma 318, 16–28 (2018). https://doi.org/10.1016/j.geoderma.2017.12.024

    Article  Google Scholar 

  46. National Soil Survey Office, Data Book of the Second National Soil Survey in China (China Agriculture Press, Beijing, 1997).

    Google Scholar 

  47. K. R. Olson and M. M. Al-Kaisi “The importance of soil sampling depth for accurate account of soil organic carbon sequestration, storage, retention and loss,” Catena 125, 33–37 (2015). https://doi.org/10.1016/j.catena.2014.10.004

    Article  Google Scholar 

  48. K. R. Olson and A. N. Gennadiev, “Dynamics of soil organic carbon storage and erosion due to land use change (Illinois, USA),” Eurasian Soil Sci. 53, 436–445 (2020). https://doi.org/10.1134/s1064229320040122

    Article  Google Scholar 

  49. J. Qian, L.-P. Zhang, W.-Y. Wang, and Q. Liu, “Organic carbon losses by eroded sediments from sloping vegetable fields in South China,” J. Mt. Sci. 14 (3), 539–548 (2017). https://doi.org/10.1007/s11629-016-3845-2

    Article  Google Scholar 

  50. D. D. Qiu, B. S. Cui, J. G. Yan, X. Ma, Z. H. Ning, F. F. Wang, H. C. Sui, and J. H. Bai, “Effect of burrowing crabs on retention and accumulation of soil carbon and nitrogen in an intertidal salt marsh,” J. Sea Res. 154, 10 (2019). https://doi.org/10.1016/j.seares.2019.101808

    Article  Google Scholar 

  51. R. K. Salemme, K. R. Olson, A. N. Gennadiyev, and R. G. Kovach, “Effect of land use change, cultivation, and landscape position on prairie soil organic carbon stocks,” Open J. Soil Sci. 8 (7), 163–173 (2018). https://doi.org/10.4236/ojss.2018.87013

    Article  Google Scholar 

  52. J. Seney and M. A. Madej, “Soil carbon storage following road removal and timber harvesting in redwood forests,” Earth Surf. Process. Landforms 40 (15), 2084–2092 (2015). https://doi.org/10.1002/esp.3781

    Article  Google Scholar 

  53. W. Sun, X. Shi, D. Yu, K. Wang, and H. Wang, “Estimation of soil organic carbon density and storage of Northeast China,” Acta Pedol. Sin. 41 (2), 298–300 (2004).

    Google Scholar 

  54. B. Takoutsing, J. C. Weber, J. A. R. Martin, K. Shepherd, E. Aynekulu, and A. Sila, “An assessment of the variation of soil properties with landscape attributes in the highlands of Cameroon,” Land Degrad. Dev. 29 (8), 2496–2505 (2018). https://doi.org/10.1002/ldr.3075

    Article  Google Scholar 

  55. C. L. Tu, T. B. He, X. H. Lu, Y. Luo, and P. Smith, “Extent to which pH and topographic factors control soil organic carbon level in dry farming cropland soils of the mountainous region of Southwest China,” Catena 163, 204–209 (2018). https://doi.org/10.1016/j.catena.2017.12.028

    Article  Google Scholar 

  56. C. Vos, A. Don, E. U. Hobley, R. Prietz, A. Heidkamp, and A. Freibauer, “Factors controlling the variation in organic carbon stocks in agricultural soils of Germany,” Eur. J. Soil Sci. 70 (3), 550–564 (2019). https://doi.org/10.1111/ejss.12787

    Article  Google Scholar 

  57. D. Wang, Z. S. Chi, B. J. Yue, X. D. Huang, J. Zhao, H. Q. Song, Z. L. Yang, R. H. Miao, Y. C. Liu, Y. J. Zhang, Y. Miao, S. J. Han, and Y. Z. Liu, “Effects of mowing and nitrogen addition on the ecosystem C and N pools in a temperate steppe: a case study from northern China,” Catena 185, 104332 (2020). https://doi.org/10.1016/j.catena.2019.104332

    Article  Google Scholar 

  58. L. Wang, F. L. Zheng, X. C. J. Zhang, G. V. Wilson, C. Qin, C. He, G. Liu, and J. Q. Zhang, “Discrimination of soil losses between ridge and furrow in longitudinal ridge-tillage under simulated upslope inflow and rainfall,” Soil Tillage Res. 198, 12 (2020). https://doi.org/10.1016/j.still.2019.104541

    Article  Google Scholar 

  59. L. Wang, X. F. Zuo, F. L. Zheng, G. V. Wilson, X. J. C. Zhang, Y. F. Wang, and H. Fu, “The effects of freeze-thaw cycles at different initial soil water contents on soil erodibility in Chinese mollisol region,” Catena 193, 11 (2020). https://doi.org/10.1016/j.catena.2020.104615

    Article  Google Scholar 

  60. S. Wang, K. Adhikari, Q. L. Zhuang, H. L. Gu, and X. X. Jin, “Impacts of urbanization on soil organic carbon stocks in the northeast coastal agricultural areas of China,” Sci. Total Environ. 721, 137814 (2020). https://doi.org/10.1016/j.scitotenv.2020.137814

    Article  Google Scholar 

  61. S. Wei, X. Zhang, N. B. McLaughlin, X. Chen, S. Jia, and A. Liang, “Impact of soil water erosion processes on catchment export of soil aggregates and associated SOC,” Geoderma 294, 63–69 (2017). https://doi.org/10.1016/j.geoderma.2017.01.021

    Article  Google Scholar 

  62. H. B. Xiao, Z. W. Li, X. F. Chang, B. Huang, X. D. Nie, C. Liu, L. Liu, D. Y. Wang, and J. Y. Jiang, “The mineralization and sequestration of organic carbon in relation to agricultural soil erosion,” Geoderma 329, 73–81 (2018). https://doi.org/10.1016/j.geoderma.2018.05.018

    Article  Google Scholar 

  63. Z. B. Xie, J. G. Zhu, G. Liu, G. Cadisch, T. Hasegawa, C. M. Chen, H. F. Sun, H. Y. Tang, and Q. Zeng, “Soil organic carbon stocks in China and changes from 1980s to 2000s,” Global Change Biol. 13 (9), 1989–2007 (2007). https://doi.org/10.1111/j.1365-2486.2007.01409.x

    Article  Google Scholar 

  64. X. M. Xu, F. L. Zheng, G. V. Wilson, C. He, J. Lu, and F. Bian, “Comparison of runoff and soil loss in different tillage systems in the mollisol region of Northeast China,” Soil Tillage Res. 177, 1–11 (2018). https://doi.org/10.1016/j.still.2017.10.005

    Article  Google Scholar 

  65. X. Z. Xu, Y. Xu, S. C. Chen, S. G. Xu, and H. W. Zhang, “Soil loss and conservation in the black soil region of Northeast China: a retrospective study,” Environ. Sci. Policy 13 (8), 793–800 (2010). https://doi.org/10.1016/j.envsci.2010.07.004

    Article  Google Scholar 

  66. B. X. Yan and J. Yang, “Study on black soil erosion rate and the transformation of soil quality influenced by erosion,” Geogr. Res. 24 (4), 499–506 (2005).

    Google Scholar 

  67. W. G. Yang, F. L. Zheng, Z. L. Wang, and Y. Han, “Effects of topography on spatial distribution of soil erosion and deposition on hillslope in the typical of black soil region,” Acta Pedol. Sin. 53 (3), 572–581 (2016).

    Google Scholar 

  68. M. Y. You, X. Z. Han, N. Hu, S. L. Du, T. A. Doane, and L. J. Li, “Profile storage and vertical distribution (0–150 cm) of soil inorganic carbon in croplands in northeast China,” Catena 185 (8), 104302 (2020). https://doi.org/10.1016/j.catena.2019.104302

    Article  Google Scholar 

  69. S. L. Zhang, L. L. Jiang, X. B. Liu, X. Y. Zhang, S. C. Fu, and L. Dai, “Soil nutrient variance by slope position in a Mollisol farmland area of Northeast China,” Chin. Geogr. Sci. 26 (4), 508–517 (2016). https://doi.org/10.1007/s11769-015-0737-2

    Article  Google Scholar 

  70. X. B. Zhang, D. E. Walling, and Q. He, “Simplified mass balance models for assessing soil erosion rates on cultivated land using caesium-137 measurements,” Hydrol. Sci. J. 44 (1), 33–45 (1999). https://doi.org/10.1080/02626669909492201

    Article  Google Scholar 

  71. X. F. Zhang, J. F. Adamowski, C. F. Liu, J. J. Zhou, G. F. Zhu, X. G. Dong, J. J. Cao, and Q. Feng, “Which slope aspect and gradient provides the best afforestation-driven soil carbon sequestration on the China’s Loess Plateau?” Ecol. Eng. 147, 9 (2020). https://doi.org/10.1016/j.ecoleng.2020.105782

    Article  Google Scholar 

  72. X. Q. Zhang, M. C. Hu, X. Y. Guo, H. Yang, Z. K. Zhang, and K. L. Zhang, “Effects of topographic factors on runoff and soil loss in Southwest China,” Catena 160, 394–402 (2018). https://doi.org/10.1016/j.catena.2017.10.013

    Article  Google Scholar 

  73. X. Y. Zhang, X. B. Liu, and J. Zhao, Utilization and Conservation of Black Soil (Science Press, Beijing, 2018).

    Google Scholar 

  74. X. Y. Zhang, Y. Y. Sui, and C. Y. Song, “Degradation process of arable mollisols,” Soil Crop 2 (1), 1–6 (2013).

    Google Scholar 

  75. X. Y. Zhang, Y. Y. Sui, X. D. Zhang, K. Meng, and S. J. Herbert, “Spatial variability of nutrient properties in black soil of northeast China,” Pedosphere 17 (1), 19–29 (2007). https://doi.org/10.1016/s1002-0160(07)60003-4

    Article  Google Scholar 

  76. J. L. Zhao, Z. Q. Yang, and G. Govers, “Soil and water conservation measures reduce soil and water losses in China but not down to background levels: evidence from erosion plot data,” Geoderma 337, 729–741 (2019). https://doi.org/10.1016/j.geoderma.2018.10.023

    Article  Google Scholar 

  77. P. Z. Zhao, S. Li, E. H. Wang, X. W. Chen, J. F. Deng, and Y. S. Zhao, “Tillage erosion and its effect on spatial variations of soil organic carbon in the black soil region of China,” Soil Tillage Res. 178, 72–81 (2018). https://doi.org/10.1016/j.still.2017.12.022

    Article  Google Scholar 

  78. Y. Y. Zhou, Y. J. Xu, W. H. Xiao, J. H. Wang, C. L. Hao, P. Zhou, and M. Shi, “Identifying the tillage effects on phosphorus export from phaeozems-dominated agricultural watershed: a plot-scale rainfall-runoff study in Northeast China,” Eurasian Soil Sci. 50, 1494–1505 (2017). https://doi.org/10.1134/s1064229317130075

    Article  Google Scholar 

  79. M. Zhu, Q. Feng, M. X. Zhang, W. Liu, Y. Y. Qin, R. C. Deo, and C. Q. Zhang, “Effects of topography on soil organic carbon stocks in grasslands of a semiarid alpine region, northwestern China,” J. Soil Sediments 19 (4), 1640–1650 (2019). https://doi.org/10.1007/s11368-018-2203-0

    Article  Google Scholar 

  80. Y. G. Zu, R. Li, W. J. Wang, D. X. Su, Y. Wang, and L. Qiu, “Soil organic and inorganic carbon contents in relation to soil physicochemical properties in northeastern China,” Acta Ecol. Sin. 31 (18), 5207–5216 (2011).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

This study was supported by the National Natural Science Foundation of China (Grant nos. 41571264 and 41701313). The data was supported from “National Earth System Science Data Center (http://www.geodata.cn)”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingyi Zhang.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei Hu, Zhai, X., Du, S. et al. Impacts of Slope and Longitudinal Ridge on Soil Organic Carbon Dynamics in the Typical Mollisols Sloping Farmland (China). Eurasian Soil Sc. 54, 951–963 (2021). https://doi.org/10.1134/S1064229321060065

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229321060065

Keywords:

Navigation