Skip to main content
Log in

Spatial Heterogeneity of Soil Thickness and Factors Controlling It in a Karst Basin

  • GENESIS AND GEOGRAPHY OF SOILS
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

Soil is a fundamental component to an ecological system. This study is aimed to clarify the spatial heterogeneity of soils in the Houzhai River basin and the factors controlling it. Overall, 2755 sites designed using ArcGIS were studied; soil thickness, vegetation, land use (human disturbance), and topographic characteristics were analyzed. Soils in the basin are characterized by the high spatial heterogeneity. Soils on the elevated convex elements of topography are thinner than those in the depressions and on flat lands. Soils in the western part of the Houzhai River basin are generally thicker than soils in the eastern part of the basin. The mean soil thickness of forestland, paddy fields, arid land, and grassland is 37.40, 84.43, 69.08 and 56.03 cm, respectively. Based on the present study, soil thickness in the Houzhai River basin is closely associated with landscape, land use, and vegetation. It is interesting that soils of croplands, including paddy fields and arid lands, are generally thicker than soils of other land uses under similar environmental conditions. The major reason for this—either the choice of soils with initially greater thickness for cropland or the result of soil protection measures by land owners—remains open to arguments and needs to be clarified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. E. C. Brevik, A. Cerdà, J. Mataix-Solera, L. Pereg, J. N. Quinton, J. Six, and K. Van-Oost, “The interdisciplinary nature of soil,” Soil 1 (1), 429–264 (2015). https://doi.org/10.5194/soild-1-429-2014

    Article  Google Scholar 

  2. R. Brinkmann and M. Parise, “Karst environments: problems, management, human impacts, and sustainability: an introduction to the special issue,” J. Cave Karst Stud. 74 (2), 135–136 (2012). https://doi.org/10.4311/2011JCKS0253

    Article  Google Scholar 

  3. K. W. Butzer, “Environmental history in the Mediterranean world: cross-disciplinary investigation of cause-and-effect for degradation and soil erosion,” J. Archaeol. Sci. 32 (12), 1773–1800 (2005). https://doi.org/10.1016/j.jas.2005.06.001

    Article  Google Scholar 

  4. X.-Y. Bai S.-J. Wang and K.-N. Xiong, “Assessing spatial-temporal evolution processes of karst rocky desertification land: indications for restoration strategies,” Land Degrad. Dev. 24, 47–56 (2011). https://doi.org/10.1002/ldr.1102

    Article  Google Scholar 

  5. A. Cerdà, “Seasonal changes of the infiltration rates in a Mediterranean scrubland on limestone.,” J. Hydrol. 198 (1–4), 209–225 (1997). https://doi.org/10.1016/S0022-1694(96)03295-7

    Article  Google Scholar 

  6. A. Cerdà, D. C. Flanagan, Y. L. Bissonnais, and J. Boardman, “Soil erosion and agriculture,” Soil Tillage Res. 106 (1), 107–108 (2009). https://doi.org/10.1016/j.still.2009.10.006

    Article  Google Scholar 

  7. A. Cerdà, M. E. Lucas-Borja, X. Úbeda, J. F. Martínez-Murillo, and S. Keesstra, “Pinus halepensis M. versus Quercus ilex subsp. rotundifolia L. runoff and soil erosion at Pedon scale under natural rainfall in Eastern Spain three decades after a forest fire,” For. Ecol. Manage. 400, 447–456 (2017). https://doi.org/10.1016/j.foreco.2017.06.038

    Article  Google Scholar 

  8. A. Cerdà and J. Rodrigo-Comino, “Is the hillslope position relevant for runoff and soil loss activation under high rainfall conditions in vineyards?” Ecohydrol. Hydrobiol. 20 (1), 59–72 (2020). https://doi.org/10.1016/j.ecohyd.2019.05.006

    Article  Google Scholar 

  9. A. Cerdà, J. Rodrigo-Comino, A. Giménez-Morera, A. Novara, M. Pulido, M. Kapović-Solomun, and S. D. Keesstra, “Policies can help to apply successful strategies to control soil and water losses. The case of chipped pruned branches (CPB) in Mediterranean citrus plantations,” Land Use Policy 75, 734–745 (2018).

    Article  Google Scholar 

  10. R. Clements, N. S. Sodhi, and M. Schilthuizen, “Limestone karsts of Southeast Asia: imperiled arks of biodiversity,” BioScience 56 (9), 733–742 (2006). https://doi.org/10.1641/0006-3568(2006)56[733:LKOSAI]2.0.CO;2

    Article  Google Scholar 

  11. J. R. Comino, J. M. Senciales, A. Cerdà, and E. C. Brevik, “The multidisciplinary origin of soil geography: a review,” Earth Sci. Rev. 177, 114–123 (2018). https://doi.org/10.1016/j.earscirev.2017.11.008

    Article  Google Scholar 

  12. T. Feng, H. Chen, K. Wang, W. Zhang, and Z. Qi, “Modeling soil erosion using a spatially distributed model in a karst catchment of Northwest Guangxi, China,” Earth Surf. Process. Landforms 39 (15), 2121–2130 (2014). https://doi.org/10.1002/esp.3625

    Article  Google Scholar 

  13. J. Ho, K. T. Lee, T. Chang, Z. Wang, and Y. Liao, “Influences of spatial distribution of AL soil thickness on shallow landslide prediction,” Eng. Geol. 124, 38–46 (2012). https://doi.org/10.1016/j.enggeo.2011.09.013

    Article  Google Scholar 

  14. A. M. Heimsath, D. J. Furbish, and W. E Dietrich, “The illusion of diffusion: field evidence for depth-dependent sediment transport,” Geology 33 (12), 949–952 (2005). https://doi.org/10.1130/G21868.1

    Article  Google Scholar 

  15. R. C. Jesús, K. Saskia, and C. Artemi, “Soil erosion as an environmental concern in vineyards: the case study of Celler del Roure, Eastern Spain, by means of rainfall simulation experiments,” Beverages 4 (2), 31 (2018). https://doi.org/10.3390/beverages4020031

    Article  Google Scholar 

  16. R. B. Kheir, C. Abdallah, and M. Khawlie, “Assessing soil erosion in Mediterranean karst landscapes of Lebanon using remote sensing and GIS,” Eng. Geol. 99 (3–4), 239–254 (2008). https://doi.org/10.1016/j.enggeo.2007.11.012

    Article  Google Scholar 

  17. S. D. Keesstra, J. Bouma, J. Wallinga, P. Tittonell, P. Smith, and R. D. Bardgett, “The significance of soils and soil science towards realization of the United Nations Sustainable Development Goals,” Soil 2, 111–128 (2016). https://doi.org/10.5194/soil-2-111-2016

    Article  Google Scholar 

  18. K. Kiernan, “Environmental degradation in karst areas of Cambodia: a legacy of war?” Land Degrad. Dev. 21 (6), 503–519 (2010). https://doi.org/10.1002/ldr.988

    Article  Google Scholar 

  19. L. Kirtman, “Integration of modified universal soil loss equation (MUSLE) into a GIS framework to assess soil erosion risk,” Land Degrad. Dev. 20 (1), 84–91 (2010). https://doi.org/10.1002/ldr.893

    Article  Google Scholar 

  20. S. Keesstra, G. Mol, J. D. Leeuw, J. Okx, M. D. Cleen, and S. Visser, “Soil-related sustainable development goals: Four concepts to make land degradation neutrality and restoration work,” Land 7 (4), 133 (2018). https://doi.org/10.3390/land7040133

    Article  Google Scholar 

  21. D. Mick, “Challenges to sustainability in the Caribbean karst,” Geol. Croat. 63 (24), 149 (2010).

    Google Scholar 

  22. M. D. Meyer, M. P. North, A. N. Gray, and H. S. Zald, “Influence of soil thickness on stand characteristics in a Sierra Nevada mixed-conifer forest,” Plant Soil 294 (1–2), 113–123 (2007). https://doi.org/10.1007/s11104-007-9235-3

    Article  Google Scholar 

  23. D. R. Montgomery, “Soil erosion and agricultural sustainability,” Proc. Natl. Acad. Sci. U.S.A. 104 (33), 13268–13272 (2007). https://doi.org/10.1073/pnas.0611508104

    Article  Google Scholar 

  24. J. D. Pelletier and C. Rasmussen, “Geomorphically based predictive mapping of soil thickness in upland watersheds,” Water Resour. Res. 45 (9), 1–15 (2009). https://doi.org/10.1029/2008WR007319

    Article  Google Scholar 

  25. T. Peng and S. J. Wang, “Effects of land use, land cover and rainfall regimes on the surface runoff and soil loss on karst slopes in Southwest China,” Catena 90, 53–62 (2012). http://119.78.100.189:8080/handle/352002/4877

    Article  Google Scholar 

  26. X. Peng, D. Shi, D. Jiang, S. Wang, and Y. Li, “Runoff erosion process on different underlying surfaces from disturbed soils in the Three Gorges Reservoir Area, China,” Catena 123, 215–224 (2014). https://doi.org/10.1016/j.catena.2014.08.012

    Article  Google Scholar 

  27. J. Rodrigo-Comino, J. Davis, S. D. Keesstra, and A. Cerdà, “Updated measurements in vineyards improves accuracy of soil erosion rates,” Agron. J. 110 (1), 411–417 (2018). https://doi.org/10.2134/agronj2017.07.0414

    Article  Google Scholar 

  28. S. Segoni, G. Martelloni, and F. Catani, “Different methods to produce distributed AL soil thickness maps and their impact on the reliability of shallow land slide modeling at catchment scale,” Landslide Sci. Pract. 3, 127–133 (2013). https://doi.org/10.1007%2F978-3-642-31310-3_18

  29. S. Visser, S. Keesstra, G. Maas, and M. D. Cleen, “Soil as a basis to create enabling conditions for transitions towards sustainable land management as a key to achieve the SDGs by 2030,” Sustainability 11 (23), 6792 (2019). https://doi.org/10.3390/su11236792

    Article  Google Scholar 

  30. C. Weisbach, H. Tiessen, and J. J. Jimenez-Osornio, “Soil fertility during shifting cultivation in the tropical karst soils of Yucatan,” Agronomie 22, 253–263 (2002).

    Article  Google Scholar 

  31. S. J. Wang, Q. M. Liu, and D. F. Zhang, “Karst rock desertification in Southwestern China: geomorphology, land use, impact and rehabilitation,” Land Degrad. Dev. 15 (2), 115–121 (2004). https://doi.org/10.1002/ldr.592

    Article  Google Scholar 

  32. P. W. Williams, “The role of the epikarst in karst and cave hydrogeology: a review,” Int. J. Speleol. 37 (1), 1–10 (2008). https://doi.org/10.5038/1827-806X.37.1.1

    Article  Google Scholar 

  33. X. Y. Wen, C. M. Huang, Y. Tang, S. L. Gong, X. X. Hu, and Z. W. Wang, “Rare earth elements: a potential proxy for identifying the lacustrine sediment source and soil erosion intensity in karst area,” J. Soils Sediments 14 (10), 1693–1702 (2014). https://doi.org/10.1007/s11368-014-0928-y

    Article  Google Scholar 

  34. Y.-Y. Wu, C.-Q. Liu, P.-P. Li, J.-Z. Wang, D. Xing, and B.-L. Wang, “Photosynthetic characteristics involved in adaptability to Karst soil and alien invasion of paper mulberry (Broussonetia papyrifera (L.) Vent.) in comparison with mulberry (Morus alba L.),” Photosynthetica 47 (1), 155–160 (2009). https://doi.org/10.1007/s11099-009-0026-3

    Article  Google Scholar 

  35. L. E. Xiang, J. Z. Cheng, C. J. Hua, J. G. Hui, and D. Yan, “The comparison of properties of karst soil and karst erosion ratio under different successional stages of karst vegetation in Nongla, Guangxi,” Acta Ecol. Sin. 24 (6), 1131–1139 (2004). https://doi.org/10.1088/1009-0630/6/5/011

    Article  Google Scholar 

  36. Y. Q. Xu, J. Peng, and X. M. Shao, “Assessment of soil erosion using RUSLE and GIS: a case study of the Maotiao River watershed, Guizhou Province, China,” Environ. Geol. 56 (8), 1643–1652 (2009). https://doi.org/10.1007/s00254-008-1261-9

    Article  Google Scholar 

  37. Y. Q. Xu, X. M. Shao, X. B. Kong, J. Peng, and Y. L. Cai, “Adapting the RUSLE and GIS to model soil erosion risk in a mountains karst watershed, Guizhou Province, China,” Environ. Monit. Asses. 141 (1–3), 275–286 (2008). https://doi.org/10.1007/s10661-007-9894-9

    Article  Google Scholar 

  38. Q. Yang, Z. Jiang, D. Yuan, Z. Ma, and Y. Xie, “Temporal and spatial changes of karst rocky desertification in ecological reconstruction region of southwest china,” Environ. Earth Sci. 72, 4483–4489 (2014). https://doi.org/10.1007/s12665-014-3348-9

    Article  Google Scholar 

  39. D. W. Yang, S. Kanae, T. Oki, T. Koike, and K. Musiake, “Global potential soil erosion with reference to land use and climate changes,” Hydrol. Process. 17, 2913–2928 (2003). https://doi.org/10.1002/hyp.1441

    Article  Google Scholar 

  40. X. B. Zhang, X. Y. Bai, and X. B. He, “Soil creeping in the weathering crust of carbonate rocks and underground soil losses in the karst mountain areas of Southwest China,” Carbonate Evaporites 26 (2), 149–153 (2011). https://doi.org/10.1007/s13146-011-0043-8

    Article  Google Scholar 

  41. Y. C. Zhou, S. J. Wang, and H. M. Lu, “Spatial distribution of soils during the process of karst rocky desertification,” Earth Environ. 38 (1), 1–7 (2010).

    Google Scholar 

  42. J. Zhou, Y. Q. Tang, P. Yang, and X. Zhang, “Inference of creep mechanism in underground soil loss of karst conduits I. Conceptual model,” Nat. Hazards 62 (3), 1191–1215 (2012). https://doi.org/10.1007/s11069-012-0143-3

    Article  Google Scholar 

  43. F. M. Ziadat and A. Y. Taimeh, “Effect of rainfall intensity, slope, land use and antecedent soil moisture on soil erosion in an arid environment,” Land Degrad. Dev. 24 (6), 582–590 (2013). https://doi.org/10.1002/ldr.2239

    Article  Google Scholar 

  44. Y. Zhang, B. Y. Liu, Q. C. Zhang, and Y. Xie, “Effect of different vegetation types on soil erosion by water,” J. Integr. Plant Biol. 45 (10), 1204–1209 (2003). https://doi.org/10.1023/A:1022289509702

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the first-class discipline construction project in Guizhou Province (GNYL[2017]007), the Guizhou science and technology support plan project (No. [2009]2840; [2017] 1176, [2020]1Y178), and the Project funded by China Postdoctoral Science Foundation (2020M673582XB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunchao Zhou.

Ethics declarations

The authors declare that they have no conflict of interest concerning this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xianfei Huang, Zhang, Z., Zhou, Y. et al. Spatial Heterogeneity of Soil Thickness and Factors Controlling It in a Karst Basin. Eurasian Soil Sc. 54, 478–486 (2021). https://doi.org/10.1134/S1064229321040074

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229321040074

Keywords:

Navigation