Skip to main content
Log in

Assessing the Function of Biological Soil Crusts on Soil Fertility (Case Study: Kiamaky Wildlife Refuge, East Azerbaijan, Iran)

  • SOIL BIOLOGY
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract—

Biological soil crusts (BSCs), are common on soil surface in arid and semiarid regions. They consist of cyanobacteria, algae, fungi, lichens and bryophytes associated with soil particles. BSCs have significant influence on primary ecosystem processes and are known as ecosystem engineers in drylands. In this study, the effect of BSCs on different soil properties in Kiamaky Wildlife Refuge in Jolfa county, East Azerbaijan province, Iran was investigated. Soil sampling was done in adjacent locations with BSCs, and bare substrate. The results showed that BSCs significantly increase the soil organic carbon, total nitrogen, microbial community population, soil respiration and microbial biomass carbon & nitrogen, as well as significantly decrease CaCO3 content. In addition, BSCs lightly increased electrical conductivity and availability of micronutrients in soil. The effect of BSCs significantly decreased along increasing depth. Generally, it was revealed that BSCs enhance the soil fertility, which can improve soil quality and ecosystem productivity in arid and semiarid regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. A. J. Williams, B. J. Buck, and M. A. Beyene, “Biological Soil Crusts in the Mojave Desert, USA: Micromorphology and Pedogenesis,” Soil Sci. Soc. Am. J. 76 (5), 1685–1695 (2012. https://doi.org/10.2136/sssaj2012.0021

    Article  Google Scholar 

  2. Methods of Soil Analysis, Part 2: Chemical and Microbiological Properties, Ed. by A. L. Page, R. H. Miller, and D. R. Keeney (Soil Science Society of America, Madison, WI, 1982).

    Google Scholar 

  3. B. Xiao, Q. H. Wang, Y. G. Zhao, and M. A. Shao, “Artificial culture of biological soil crusts and its effects on overland flow and infiltration under simulated rainfall,” Appl. Soil Ecol. 48 (1), 11–7 (2011). https://doi.org/10.1016/j.apsoil.2011.02.006

    Article  Google Scholar 

  4. B. Zhang, Y. Zhang, J. Zhao, N. Wu, R. Chen, and J. Zhang, “Microalgal species variation at different successional stages in biological soil crusts of the Gurbantunggut Desert, Northwestern China,” Biol. Fertil. Soils. 45 (5), 539–47 (2009). https://doi.org/10.1007/s00374-009-0364-0

    Article  Google Scholar 

  5. C. Hu, Y. Liu, B. S. Paulsen, D. Petersen, and D. Klaveness, “Extracellular carbohydrate polymers from five desert soil algae with different cohesion in the stabilization of fine sand grain,” Carbohydr. Polym. 54 (1), 33–42 (2003). https://doi.org/10.1016/S0144-8617(03)00135-8

    Article  Google Scholar 

  6. D. C. Housman, H. H. Powers, A. D. Collins, and J. Belnap, “Carbon and nitrogen fixation differ between successional stages of biological soil crusts in the Colorado Plateau and Chihuahuan Desert,” J. Arid Environ. 66 (4), 620–634 (2006). https://doi.org/10.1016/j.jaridenv.2005.11.014

    Article  Google Scholar 

  7. D. Eldridge, “Ecology and management of biological soil crusts: recent developments and future challenges,” Bryologist 103 (4), 742–747 (2000). https://doi.org/10.1639/0007-2745(2000)103[0742:eamobs]2.0.co;2

    Article  Google Scholar 

  8. D. M. Mager, “Carbohydrates in cyanobacterial soil crusts as a source of carbon in the southwest Kalahari, Botswana,” Soil Biol. Biochem. 42 (2), 313–318 (2010). https://doi.org/10.1016/j.soilbio.2009.11.009

    Article  Google Scholar 

  9. D. S. Jenkinson, P. C. Brookes, and D. S. Powlson, “Measuring soil microbial biomass,” Soil Biol. Biochem. 36 (1), 5–7 (2004).

    Article  Google Scholar 

  10. D. W. Nelson and L. E. Sommers, “Total carbon, organic carbon, and organic matter,” in Methods of Soil Analysis, Part 2: Chemical and Microbiological Properties, Ed. by A. L. Page (Soil Science Society of America, Madison, WI, 1982), Chap. 29, pp. 961–1010.

  11. J. P. E. Anderson, “Soil respiration,” in Methods of Soil Analysis, Part 2: Chemical and Microbiological Properties, Ed. by A. L. Page (Soil Science Society of America, Madison, WI, 1982), Chap. 41, pp. 831–870.

  12. E. Rodríguez-Caballero, Y. Cantón, S. Chamizo, R. Lázaro, and A. Escudero, “Soil loss and runoff in semiarid ecosystems: a complex interaction between biological soil crusts, micro-topography, and hydrological drivers,” Ecosystems 16 (4), 529–546 (2013). https://doi.org/10.1007/s10021-012-9626-z

    Article  Google Scholar 

  13. F. Garcia-Pichel and J. Belnap, “Microenvironments and microscale productivity of cyanobacterial desert crusts,” J. Phycol. 32 (5), 774–782 (1996). https://doi.org/10.1111/j.0022-3646.1996.00774.x

    Article  Google Scholar 

  14. H. L. Zhao, Y. R. Guo, R. L. Zhou, and S. Drake, “Biological soil crust and surface soil properties in different vegetation types of Horqin Sand Land, China,” Catena 82 (2), 70–76 (2010). https://doi.org/10.1016/j.catena.2010.05.002

    Article  Google Scholar 

  15. H. T. Root, “A field guide to biological soil crusts of Western U.S. drylands,” Bryologist 116 (2), 224–225 (2013). https://doi.org/10.1639/BRYOLOGIST-D-13-00038.1

    Article  Google Scholar 

  16. I. Miralles, F. Domingo, E. García-Campos, C. Trasar-Cepeda, M. C. Leirós, and F. Gil-Sotres, “Biological and microbial activity in biological soil crusts from the Tabernas desert, a sub-arid zone in SE Spain,” Soil Biol. Biochem. 55, 113–121 (2012). https://doi.org/10.1016/j.soilbio.2012.06.017

    Article  Google Scholar 

  17. J. Belnap, “Comparative structure of physical and biological soil crusts,” in Biological Soil Crusts: Structure, Function, and Management (Springer-Verlag, New York, 2001), Vol. 150, pp. 177–191. https://doi.org/10.1007/978-3-642-56475-8_15

  18. J. Belnap, “The potential roles of biological soil crusts in dryland hydrologic cycles,” Hydrol. Process. 20 (15), 3159–3178 (2006). https://doi.org/10.1002/hyp.6325

    Article  Google Scholar 

  19. J. Belnap, C. V. Hawkes, and M. K. Firestone, “Boundaries in miniature: two examples from soil,” Bioscience 53 (8), 739 (2003). https://doi.org/10.1641/0006-3568(2003)053[0739:BIMTEF]2.0.CO;2

    Article  Google Scholar 

  20. J. Belnap, R. Prasse, and K. T. Harper, “Influence of biological soil crusts on soil environments and vascular plants,” in Biological Soil Crusts: Structure, Function, and Management (Springer-Verlag, New York, 2001), Vol. 150, pp. 281–300. https://doi.org/10.1007/978-3-642-56475-8_21

  21. J. Belnap, R. Rosentreter, S. Leonard, J. Kaltenecker, J. Williams, and D. Eldridge, Biological Soil Crusts: Ecology and Management. Technical Reference 1730-2 (Denver, CO, 2001), pp. 1730–1732.

  22. J. F. Weltzin, M. E. Loik, S. Schwinning, D. G. Williams, P. A. Fay, B. M. Haddad, et al., “Assessing the response of terrestrial ecosystems to potential changes in precipitation,” Bioscience 53 (10), 941 (2003). https://doi.org/10.1641/0006-3568(2003)053[0941:ATROTE]2.0.CO;2

    Article  Google Scholar 

  23. J. Yu, G. J. Kidron, S. Pen-Mouratov, H. Wasserstrom, G. Barness, and Y. Steinberger, “Do development stages of biological soil crusts determine activity and functional diversity in a sand-dune ecosystem?” Soil Biol. Biochem. 51, 66–72 (2012). https://doi.org/10.1016/j.soilbio.2012.04.007

    Article  Google Scholar 

  24. K. T. Harper and R. L. Pendleton, “Cyanobacteria and cyanolichens: Can they enhance availability of essential minerals for higher plants?” Great Basin Nat. 53, 59–72 (1993).

    Google Scholar 

  25. M. A. Bowker, D. J. Eldrige, J. Val, and S. Soliveres, “Hydrology in a patterned landscape is co-engineered by soil-disturbing animals and biological crust,” Soil Biol. Biochem. 61, 14–22 (2013). https://doi.org/10.1016/j.soilbio.2013.02.002

    Article  Google Scholar 

  26. M. A. Bowker, J. Belnap and M. E. Miller, “Spatial modeling of biological soil crusts to support rangeland assessment and monitoring,” Rangeland Ecol. Manage. 59 (5), 519–529 (2006). https://doi.org/10.2111/05-179R1.1

    Article  Google Scholar 

  27. M. A. Bowker, J. Belnap, D. W. Davidson, and H. Goldstein, “Correlates of biological soil crust abundance across a continuum of spatial scales: support for a hierarchical conceptual model,” J. Appl. Ecol. 43 (1), 152–163 (2006). https://doi.org/10.1111/j.1365-2664.2006.01122.x

    Article  Google Scholar 

  28. M. Alexander, “Most probable number method for microbial populations,” in Methods of Soil Analysis, Part 2: Chemical and Microbiological Properties, Ed. by A. L. Page, R. H. Miller, and D. R. Keeney (Soil Science Society of America, Madison, WI, 1982), pp. 815–820.

  29. M. J. Acea, A. Prieto-Fernández, and N. Diz-Cid, “Cyanobacterial inoculation of heated soils: effect on microorganisms of C and N cycles and on chemical composition in soil surface,” Soil Biol. Biochem. 35 (4), 513–524 (2003). https://doi.org/10.1016/S0038-0717(03)00005-1

    Article  Google Scholar 

  30. M. Veste, T. Littmann, S. W. Breckle, and A. Yair, “The role of biological soil crusts on desert sand dunes in the northwestern Negev, Israel,” in Sustainable Land Use in Deserts (Springer-Verlag, New York, 2001), pp. 357–367. https://doi.org/10.1007/978-3-642-59560-8_38

  31. N. N. Barger, J. E. Herrick, J. van Zee and J. Belnap, “Impacts of biological soil crust disturbance and composition on C and N loss from water erosion,” Biogeochemistry 77 (2), 247–263 (2006). https://doi.org/10.1007/s10533-005-1424-7

    Article  Google Scholar 

  32. O. Malam Issa, Y. Le Bissonnais, C. Défarge, and J. Trichet, “Role of a cyanobacterial cover on structural stability of sandy soils in the Sahelian part of western Niger,” Geoderma 101 (3–4), 15–30 (2001). https://doi.org/10.1016/S0016-7061(00)00093-8

    Article  Google Scholar 

  33. S. L. Johnson, S. Neuer, and F. Garcia-Pichel, “Export of nitrogenous compounds due to incomplete cycling within biological soil crusts of arid lands,” Environ. Microbiol. 9 (3), 680–689 (2007). https://doi.org/10.1111/j.1462-2920.2006.01187.x

    Article  Google Scholar 

  34. S. R. Olsen and L. Sommers, “Phosphorus,” in Methods of Soil Analysis, Part 2: Chemical and Microbiological Properties, Ed. by A. L. Page (Soil Science Society of America, Madison, WI, 1982), pp. 403–430.

  35. W. Elbert, B. Weber, B. Büdel, M. O. Andreae, and U. Pöschl, “Microbiotic crusts on soil, rock and plants: neglected major players in the global cycles of carbon and nitrogen?” Biogeosci. Discuss. 6 (4), 6983–7015 (2009). https://doi.org/10.5194/bgd-6-6983-2009

    Article  Google Scholar 

  36. W. J. Williams and D. J. Eldridge, “Deposition of sand over a cyanobacterial soil crust increases nitrogen bioavailability in a semi-arid woodland,” Appl. Soil Ecol. 49 (1), 26–31 (2011). https://doi.org/10.1016/j.apsoil.2011.07.005

    Article  Google Scholar 

  37. X. R. Li, R. L. Jia, Y. W. Chen, L. Huang, and P. Zhang, “Association of ant nests with successional stages of biological soil crusts in the Tengger Desert, Northern China,” Appl. Soil Ecol. 47 (1), 59–66 (2011). https://doi.org/10.1016/j.apsoil.2010.10.010

    Article  Google Scholar 

  38. Y. Cantón, A. Solé-Benet, C. Asensio, S. Chamizo, and J. Puigdefábregas, “Aggregate stability in range sandy loam soils Relationships with runoff and erosion,” Catena 77 (3), 192–199 (2009). https://doi.org/10.1016/j.catena.2008.12.01

    Article  Google Scholar 

  39. Y. Guo, H. Zhao, X. Zuo, S. Drake, and X. Zhao, “Biological soil crust development and its topsoil properties in the process of dune stabilization, Inner Mongolia, China,” Environ. Geol. 54 (3), 653–662 (2008). https://doi.org/10.1007/s00254-007-1130-y

    Article  Google Scholar 

  40. Y. Liu, H. Yang, X. Li, and Z. Xing, “Effects of biological soil crusts on soil enzyme activities in revegetated areas of the Tengger Desert, China,” Appl. Soil Ecol. 80, 6–14 (2014). https://doi.org/10.1016/j.apsoil.2014.03.015

    Article  Google Scholar 

  41. Y. Liu, X. Li, Z. Xing, X. Zhao, and Y. Pan, “Responses of soil microbial biomass and community composition to biological soil crusts in the revegetated areas of the Tengger Desert,” Appl. Soil Ecol. 65, 52–59 (2013). https://doi.org/10.1016/j.apsoil.2013.01.005

    Article  Google Scholar 

  42. Y. M. Zhang, H. L. Wang, X. Q. Wang, W. K. Yang, and D. Y. Zhang, “The microstructure of microbiotic crust and its influence on wind erosion for a sandy soil surface in the Gurbantunggut Desert of Northwestern China,” Geoderma 132 (3–4), 441–449 (2006). https://doi.org/10.1016/j.geoderma.2005.06.008

    Article  Google Scholar 

  43. Y. Wu, B. Rao, P. Wu, Y. Liu, G. Li, and D. Li, “Development of artificially induced biological soil crusts in fields and their effects on top soil,” Plant Soil 370 (1–2), 115–124 (2013). https://doi.org/10.1007/s11104-013-1611-6

    Article  Google Scholar 

  44. Y. Xu, F. Rossi, G. Colica, S. Deng, R. De Philippis, and L. Chen, “Use of cyanobacterial polysaccharides to promote shrub performances in desert soils: a potential approach for the restoration of decertified areas,” Biol. Fertil. Soils 49 (2), 143–152 (2013). https://doi.org/10.1007/s00374-012-0707-0

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors would like to thank Dr. Roger Rosentreter, Boise State University, Idaho, USA for his kind help and revision of the English text.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Sohrabi.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorji, M., Bakhosh, M., Sohrabi, M. et al. Assessing the Function of Biological Soil Crusts on Soil Fertility (Case Study: Kiamaky Wildlife Refuge, East Azerbaijan, Iran). Eurasian Soil Sc. 54, 409–416 (2021). https://doi.org/10.1134/S1064229321030054

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229321030054

Keywords:

Navigation