Skip to main content
Log in

Enhanced Sorption of Cadmium by using Biochar Nanoparticles from Ball Milling in a Sandy Soil

  • SOIL CHEMISTRY
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

Two sizes of particles have been employed from wood-derived biochar which produced by slow pyrolysis at 650°C under Ar gas flow to investigate size and dosage effects of biochar at cadmium (Cd) sorption via batch experiment in a sandy soil. The macro (MBC) (0.5–1 mm) and nano size (NBC) of biochar divided by sieving and milling by planetary ball mill processes from pristine biochar, respectively. X-ray diffraction analysis of NBC indicated the presence of magnesian-calcite mineral with turbostratic crystallites. Also, NBC differs from MBC by a higher intensity and different types of surface functional groups such as hydroxyl and carboxyl, and by more polarity, aromaticity and less C–C bands based on FTIR analysis. The zeta potential of NBC ranged from +16.2 to –71.8 mV which can be an effective factor in the agglomeration of particles. NBC particles have a higher specific surface area (approximately 210%) and total pore volume and external surface area, and greater mean pore diameter than MBC. Isotherm equations, namely, Freundlich, Langmuir, Temkin, and Dubinin–Radushkevich were applied to evaluate which model provides the best fit predicted data with experimental results. The Langmuir isotherm provided the best fit according to adjusted R2 and reduced chi-square parameters. By adding 2% (w/w) of MBC and NBC to sandy soil samples, maximum sorption of cadmium reached 328.9 and 1062.4 mg kg–1 which were 58.6% and 412.2% more than control soil. The findings of the study confirmed that ball milling proposes nanobiochar which is more effective at cadmium sorption from contaminated solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. K. G. Akpomie, F. A. Dawodu, and K. O. Adebowale, “Mechanism on the sorption of heavy metals from binary-solution by a low-cost montmorillonite and it’s desorption potential,” Alexandria Eng. J. 54 (3), 757–767 (2015). https://doi.org/10.1016/j.aej.2015.03.025

    Article  Google Scholar 

  2. M. Chen, N. Alim, Y. Zhang, N. Xu, and X. Cao, “Contrasting effects of biochar nanoparticles on the retention and transport of phosphorus in acidic and alkaline soils,” Environ Pollut. 239, 562–570 (2018). https://doi.org/10.1016/j.envpol.2018.04.050

    Article  Google Scholar 

  3. S. Chowdhury, R. Misra, P. Kushwaha, and P. Das, “Optimum sorption isotherm by linear and non-linear methods for safranin onto alkali treated rice husk,” Biorem. J. 15 (2), 77–89 (2011). https://doi.org/10.1080/10889868.2011.570282

    Article  Google Scholar 

  4. X. Cui, H. Hao, C. Zhang, Z. He, and X. Yang, “Capacity and mechanisms of ammonium and cadmium sorption on different wetland-plant derived biochars,” Sci. Total Environ. 539, 566–575 (2015). https://doi.org/10.1016/j.scitotenv.2015.09.022

    Article  Google Scholar 

  5. J. Diatta, A. Andrzejewska, and T. Rafałowicz, “Reactivity, exchangeability, and solubility of Cu, Zn, and Cd in various soil materials: concepts and evaluation,” Eurasian Soil Sci. 52, 853–864 (2019), https://doi.org/10.1134/S1064229319070032

    Article  Google Scholar 

  6. A. Y. Elnour, A. A. Alghyamah, H. M. Shaikh, A. M. Poulose, S. M. Al-Zahrani, A. Anis, and M. I. Al-Wabel, “Effect of pyrolysis temperature on biochar microstructural evolution, physicochemical characteristics, and its influence on biochar/polypropylene composites,” Appl. Sci. 9 (1149), 1–18 (2019). https://doi.org/10.3390/app9061149

    Article  Google Scholar 

  7. L. Ginés, S. Mandal, A. Ahmed, C. L. Cheng, M. Sow, and O. A. Williams, “Positive zeta potential of nanodiamonds,” Nanoscale 9 (34), 12549–12555 (2017). https://doi.org/10.1039/c7nr03200e

    Article  Google Scholar 

  8. M. Hong, L. Zhang, Z. Tan, and Q. Huang, “Effect mechanism of biochar’s zeta potential on farmland soil’s cadmium immobilization,” Environ. Sci. Pollut. Res. 26 (19), 19738–19748 (2019). https://doi.org/10.1007/s11356-019-05298-5

    Article  Google Scholar 

  9. G. N. Koptsik, “Modern approaches to remediation of heavy metal polluted soils: A review,” Eurasian Soil Sci. 47, 707–722 (2014). https://doi.org/10.1134/S1064229314070072

    Article  Google Scholar 

  10. L. Leng, H. Huang, H. Li, J. Li, and W. Zhou, “Biochar stability assessment methods: a review,” Sci. Total Environ. 647, 210–222 (2019). https://doi.org/10.1016/j.scitotenv.2018.07.402

    Article  Google Scholar 

  11. S. J. Liu, Y. G. Liu, X. F. Tan, G. M. Zeng, Y. H. Zhou, S. B. Liu, Z. H. Yin, L. H. Jiang, M. F. Li, and J. Wen, “The effect of several activated biochars on Cd immobilization and microbial community composition during in-situ remediation of heavy metal contaminated sediment,” Chemosphere 208, 655–664 (2018). https://doi.org/10.1016/j.chemosphere.2018.06.023

    Article  Google Scholar 

  12. H. Lyu, B. Gao, F. He, A. Zimmerman, C. Ding, H. Huang, and J. Tang, “Effects of ball milling on the physicochemical and sorptive properties of biochar: experimental observations and governing mechanisms,” Environ. Pollut. 233, 54–63 (2018). https://doi.org/10.1016/j.envpol.2017.10.037

    Article  Google Scholar 

  13. H. Lyu, Z. Yu, B. Gao, F. He, J. Huang, J. Tang, and B. Shen, “Ball-milled biochar for alternative carbon electrode,” Environ Sci. Pollut. Res. 26 (14), 14693–14702 (2019). https://doi.org/10.1007/s11356-019-04899-4

    Article  Google Scholar 

  14. S. Ma, F. Jing, S. P. Sohi, and J. Chen, “New insights into contrasting mechanisms for PAE adsorption on millimeter, micron- and nano-scale biochar,” Environ. Sci. Pollut. Res. 26, 18636–18650 (2016). https://doi.org/10.1007/s11356-019-05181-3

    Article  Google Scholar 

  15. S. P. McGrath and C. H. Cunliffe, “A simplified method for the extraction of the metals Fe, Zn, Cu, Ni, Cd, Pb, Cr, Co and Mn from soils and sewage sludge,” J. Sci. Food Agric. 36, 794–798 (1985). https://doi.org/10.1002/jsfa.2740360906

    Article  Google Scholar 

  16. B. Munkhbayar, M. J. Nine, J. Jeoun, M. Bat-Erdene, H. Chung, and H. Jeong, “Influence of dry and wet ball milling on dispersion characteristics of the multiwalled carbon nanotubes in aqueous solution with and without surfactant,” Powder Technol. 234, 132–140 (2013). https://doi.org/10.1016/j.powtec.2012.09.045

    Article  Google Scholar 

  17. M. Naghdi, M. Taheran, S. K. Brar, A. Kermanshahipour, M. Verma, and R. Y. Surampalli, “Immobilized laccase on oxygen functionalized nanobiochars through mineral acids treatment for removal of carbamazepine,” Sci. Total Environ. 584–585, 393–401 (2017). https://doi.org/10.1016/j.scitotenv.2017.01.021

    Article  Google Scholar 

  18. M. Naghdi, M. Taheran, S. K. Brar, T. Rouissi, M. Verma, R. Y. Surampalli, and J. R. Valero, “A green method for production of nanobiochar by ball milling optimization and characterization,” J. Clean. Prod. 164, 1394–1405 (2017a). https://doi.org/10.1016/j.jclepro.2017.07.084

    Article  Google Scholar 

  19. B. C. Nyamunda, T. Chivhanga, U. Guyo, and F. Chigondo, “Removal of Zn (II) and Cu (II) ions from industrial wastewaters using magnetic biochar derived from water hyacinth,” J. Eng. 2019, 5656983 (2019). https://doi.org/10.1155/2019/5656983

    Article  Google Scholar 

  20. P. Oleszczuk, W. Cwikła-Bundyra, A. Bogusz, E. Skwarek, and Y. S. Ok, “Characterization of nanoparticles of biochars from different biomass,” J. Anal. Appl. Pyrol. 121, 165–172 (2016). https://doi.org/10.1016/j.jaap.2016.07.017

    Article  Google Scholar 

  21. E. Y. Rizhiya, N. P. Buchkina, I. M. Mukhina, A. S. Belinets, and E. V. Balashov, “Effect of biochar on the properties of loamy sand spodosol soil samples with different fertility levels: a laboratory experiment,” Eurasian Soil Sci. 48, 192–200 (2015). https://doi.org/10.1134/S1064229314120084

    Article  Google Scholar 

  22. G. Sigmund, T. Huffer, T. Hofmann, and M. Kah, “Biochar total surface area and total pore volume determined by N2 and CO2 physisorption are strongly influenced by degassing temperature,” Sci. Total Environ. 580, 770–775 (2016). https://doi.org/10.1016/j.scitotenv.2016.12.023

    Article  Google Scholar 

  23. B. Singh, M. M. Dolk, Q. Shen, and M. Camps-Arbestain, “Biochar pH, electrical conductivity and liming potential,” in Biochar: A Guide to Analytical Methods, Ed. by B. Singh, et al. (CRC Press, Boca Raton, FL, 2017), pp. 23–38. https://doi.org/10.1111/sum.12389.

  24. B. Singh and M. D. Raven, “X-ray diffraction analysis of biochar,” in Biochar: A Guide to Analytical Methods, Ed. by B. Singh, et al. (CRC Press, Boca Raton, FL, 2017), pp. 245–252. https://doi.org/10.1111/sum.12389

  25. M. Taheran, M. Naghdi, S. K. Brar, E. J. Knystautas, M. Verma, A. A. Ramirez, R. Y. Surampalli, and J. R. Valero, “Adsorption study of environmentally relevant concentrations of chlortetracycline on pinewood biochar,” Sci. Total Environ. 571, 772–777 (2016). https://doi.org/10.1016/j.scitotenv.2016.07.050

    Article  Google Scholar 

  26. S. S. Wang, B. Gao, A. R. Zimmerman, Y. C. Li, L. N. Ma, W. G. Harris, and K. W. Migliaccio, “Physicochemical and sorptive properties of biochars derived from woody and herbaceous biomass,” Chemosphere 134, 257–262 (2015). https://doi.org/10.1016/j.chemosphere.2015.04.062

    Article  Google Scholar 

  27. J. M. Yusof, M. A. M. Salleh, S. A. Rashid, I. Ismail, and S. N. Adam, “Characterization of carbon particles (CPs) derived from dry milled Kenaf biochar,” J. Eng. Sci. Technol. 2014, 125–131 (2014).

    Google Scholar 

  28. Q. Zhang, J. Wang, H. Lyu, Q. Zhao, L. Jiang, and L. Lia, “Ball-milled biochar for galaxolide removal: Sorption performance and governing mechanisms,” Sci. Total Environ. 659, 1537–1545 (2019). https://doi.org/10.1016/j.scitotenv.2019.01.005

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank the University of Tabriz. In addition, the authors wish to thank Wageningen University and Research as well, the Ministry of Science and Technology of Iran for providing a research fellowship to the paper’s first author.

Funding

This project is supported by a research grant of the University of Tabriz (number 810).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Reyhanitabar.

Ethics declarations

The authors declare that they have no conflict of interest.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramezanzadeh, H., Reyhanitabar, A., Oustan, S. et al. Enhanced Sorption of Cadmium by using Biochar Nanoparticles from Ball Milling in a Sandy Soil. Eurasian Soil Sc. 54, 201–211 (2021). https://doi.org/10.1134/S1064229321020125

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229321020125

Keywords:

Navigation