Skip to main content
Log in

Spatial Variation of Organic Carbon Stocks in Peat Soils and Gleyzems in the Northeast of Sakhalin Island

  • SOIL CHEMISTRY
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

Stocks of organic carbon in the northeast of Sakhalin Island average 109.8 kg/m2 in medium-deep oligotrophic peat soils, 75.8 kg/m2 in oligotrophic peat gley soils, 20.9–42.7 kg/m2 in peat gleyzems, and 16.6 kg/m2 in gleyzems. The vertical distribution of volumetric concentrations and the carbon stocks in different subtypes of peat soils and gleyzems have been studied. Linear regression equations have been developed to estimate carbon stocks in dependence on the depth of the peat layer. The coefficients of variation of the carbon stocks on test plots of 50 × 50 m in size increase in the following order: medium-deep oligotrophic peat soils (3.1–7.3%) < oligotrophic peat gley soils (3.3–12.9%) < peat gleyzems (9.2–21.7%) < gleyzems (22.9%). The proportion of the carbon stock variances has been estimated for three spatial scales (50 × 50 m, 5 × 5 km, and 10 × 10 km) with the use of the hierarchical analysis of variance. The required number of sampled profiles for reliable data on the mean carbon stocks in peat soils and gleyzems has been estimated. Nomograms for determining the least significant difference between the estimates of the mean soil carbon stocks have been proposed for studies with a small number of samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

REFERENCES

  1. V. A. Alekseev and R. A. Berdsi, Carbon in Ecosystems of Forests and Mires of Russia (Siberian Branch, Russian Academy of Sciences, Krasnoyarsk, 1994) [in Russian].

  2. E. T. Bazin, V. D. Kopenkin, V. I. Kosov, S. S. Korchunov, and V. M. Petrovich, Technical Analysis of Peat, Ed. by E. T. Bazin (Nedra, Moscow, 1992) [in Russian].

    Google Scholar 

  3. N. V. Vlastova, Peatbogs of Sakhalin (Academy of Sciences of Soviet Union, Moscow, 1960) [in Russian].

    Google Scholar 

  4. E. A. Dmitriev, Mathematical Statistics in Soil Science (Moscow State Univ., Moscow, 1995) [in Russian].

    Google Scholar 

  5. L. I. Inisheva, The Science of Mires (Tomsk State Pedagogical Univ., Tomsk, 2009) [in Russian].

    Google Scholar 

  6. L. L. Shishov, V. D. Tonkonogov, I. I. Lebedeva, and M. I. Gerasimova, Classification and Diagnostic System of Russian Soils (Oikumena, Smolensk, 2004) [in Russian].

    Google Scholar 

  7. B. M. Kogut and A. S. Frid, “Comparative evaluation of methods for determining the content of humus in soils,” Pochvovedenie, No. 9, 119–123 (1993).

    Google Scholar 

  8. D. N. Lipatov, A. I. Shcheglov, D. V. Manakhov, Yu. A. Zavgorodnyaya, M. S. Rozanova, and P. T. Brekhov, “Spatial variation of peat soil properties in the oil-producing region of northeastern Sakhalin,” Eurasian Soil Sci. 50, 850–860 (2017). https://doi.org/10.1134/S1064229317070055

    Article  Google Scholar 

  9. A. V. Pastukhov and D. A. Kaverin, “Soil carbon pools in tundra and taiga ecosystems of northeastern Europe,” Eurasian Soil Sci. 46, 958–967 (2013). https://doi.org/10.1134/S1064229313070077

    Article  Google Scholar 

  10. A. V. Smagin, N. B. Sadovnikova, M. V. Smagina, M. V. Glagolev, E. M. Shevchenko, D. D. Khaidapova, and A. K. Guber, Modeling of Soil Organic Matter Dynamics (Moscow State Univ., Moscow, 2001) [in Russian].

    Google Scholar 

  11. Theory and Methods of Soil Physics, Ed. by E. V. Shein and L. O. Karpachevskii (Grif i K, Moscow, 2007) [in Russian].

    Google Scholar 

  12. C. E. Akumu and J. W. McLaughlin, “Regional variation in peatland carbon stock assessments, northern Ontario, Canada,” Geoderma 209–210, 161–167 (2013). https://doi.org/10.1016/j.geoderma.2013.06.021

    Article  Google Scholar 

  13. D. Astiani, M. Mujiman, and A. Rafiastanto, “Forest type diversity on carbon stocks: Cases of recent land cover conditions of tropical lowland, swamp, and peatland forests in West Kalimantan, Indonesia,” Biodiversitas 18 (1), 137–144 (2017). https://doi.org/10.13057/biodiv/d180120

    Article  Google Scholar 

  14. A. G. E. Ausseil, H. Jamali, B. R. Clarkson, and N. E. Golubiewski, “Soil carbon stocks in wetlands of New Zealand and impact of land conversion since European settlement,” Wetlands Ecol. Manage. 23 (5), 947–961 (2015). https://doi.org/10.1007/s11273-015-9432-4

    Article  Google Scholar 

  15. D. W. Beilman, D. H. Vitt, J. S. Bhatti, and S. Forest, “Peat carbon stocks in the southern Mackenzie River Basin: uncertainties revealed in a high-resolution case study,” Global Change Biol. 14, 1221–1232 (2008). https://doi.org/10.1111/j.1365-2486.2008.01565.x

    Article  Google Scholar 

  16. F. Conen, A. Zerva, D. Arrouays, C. Jolivet, P. G. Jarvis, J. Grace, and M. Mencuccini, “The carbon balance of forest soils: detectability of changes in soil carbon stocks in temperate and boreal forests,” in The Carbon Balance of Forest Biomes, Ed. by H. Griffith and P. G. Jarvis (Garland Science, New York, 2004), pp. 233–247.

    Google Scholar 

  17. M. H. Garnett, P. Ineson, A. C. Stevenson, and D. C. Howard, “Terrestrial organic carbon storage in a British moorland,” Global Change Biol. 7 (4), 375–388 (2001).

    Article  Google Scholar 

  18. E. Goidts, B. van Wesemael, and M. Crucifix, “Magnitude and sources of uncertainties in soil organic carbon (SOC) stock assessments at various scales,” Eur. J. Soil Sci. 60 (5), 723–739 (2009). https://doi.org/10.1111/j.1365-2389.2009.01157.x

    Article  Google Scholar 

  19. N. A. Griffiths, P. J. Hanson, D. M. Ricciuto, C. M. Iversen, A. M. Jensen, A. Malhotra, K. J. McFarlane, R. Norby, K. Sargsyan, S. D. Sebesteyen, X. Shi, A. P. Walker, E. J. Ward, J. M. Warren, and D. J. Weston, “Temporal and spatial variation in peatland carbon cycling and implications for interpreting responses of an ecosystem-scale warming experiment,” Soil Sci. Soc. Am. J. 81 (6), 1668–1688 (2017). https://doi.org/10.2136/sssaj2016.12.0422

    Article  Google Scholar 

  20. U. Hoffmann, T. Hoffmann, E. A. Johnson, and N. J. Kuhn, “Assessment of variability and uncertainty of soil organic carbon in a mountainous boreal forest (Canadian Rocky Mountains, Alberta),” Catena 113, 107–121 (2014). https://doi.org/10.1016/j.catena.2013.09.009

    Article  Google Scholar 

  21. S. A. Howie and H. J. van Meerveld, “Are point measurements in a bog representative of their surrounding area?” Mires Peat 24, 1–16 (2019). https://doi.org/10.19189/MaP.2018.OMB.364

    Article  Google Scholar 

  22. IUSS Working Group WRB, World Reference Base for Soil Resources 2014, Update 2015, International Soil Classification System for Naming Soils and Creating Legends for Soil Maps, World Soil Resources Reports No. 106 (UN Food and Agriculture Organization, Rome, 2015).

    Google Scholar 

  23. J. B. Kauffman, V. B. Arifanti, I. Basuki, S. Kurnianto, N. Novita, D. Murdiyarso, D. C. Donato, and M. W. Warren, Protocols for the Measurement, Monitoring, and Reporting of Structure, Biomass, Carbon Stocks and Greenhouse Gas Emissions in Tropical Peat Swamp Forests (Center for International Forestry Research, Bogor Barat, 2016). https://doi.org/10.17528/cifor/006429

  24. É. Maillard, B. G. McConkey, and D. A. Angers, “Increased uncertainty in soil carbon stock measurement with spatial scale and sampling profile depth in world grasslands: a systematic analysis,” Agric., Ecosyst. Environ. 236, 268–276 (2017). https://doi.org/10.1016/j.agee.2016.11.024

    Article  Google Scholar 

  25. S. Mitra, R. Wassmann, and P. L. Vlek, “An appraisal of global wetland area and its organic carbon stock,” Curr. Sci. 88 (1), 25–35 (2005).

    Google Scholar 

  26. L. E. Parry and D. J. Charman, “Modeling soil organic carbon distribution in blanket peatlands at a landscape scale,” Geoderma 211–212, 75–84 (2013). https://doi.org/10.1016/j.geoderma.2013.07.006

    Article  Google Scholar 

  27. J. Penman, M. Gytarski, T. Hiraishi, T. Krug, D. Kruger, R. Pipatti, L. Buendia, K. Miwa, T. Ngara, K. Tanabe, and F. Wagner, Good Practice Guidance for Land Use, Land-Use Change and Forestry (Intergovernmental Panel on Climate Change, Kanagawa, 2003).

    Google Scholar 

  28. M. Schrumpf, E. D. Schulze, K. Kaiser, and J. Schumacher, “How accurately can soil organic carbon stocks and stock changes be quantified by soil inventories?” Biogeosciences 8 (5), 1193–1212 (2011). https://doi.org/10.5194/bg-8-1193-2011

    Article  Google Scholar 

  29. L. F. Weissert and M. Disney, “Carbon storage in peatlands: a case study on the Isle of Man,” Geoderma 204–205, 111–119 (2013). https://doi.org/10.1016/j.geoderma.2013.04.016

    Article  Google Scholar 

  30. M. L. Wellock, B. Reidy, C. M. Laperle, T. Bolger, and G. Kiely, “Soil organic carbon stocks of afforested peatlands in Ireland,” Forestry 84 (4), 441–451 (2011). https://doi.org/10.1093/forestry/cpr046

    Article  Google Scholar 

  31. C. Wüst-Galley, E. Mössinger, and J. Leifeld, “Loss of the soil carbon storage function of drained forested peatlands,” Mires Peat 18 (7), 1–22 (2016). https://doi.org/10.19189/MaP.2015.OMB.189

    Article  Google Scholar 

  32. W. Xing, K. Bao, A. V. Gallego-Sala, D. J. Charman, Z. Zhang, C. Gao, X. Lu, and G. Wang, “Climate controls on carbon accumulation in peatlands of Northeast China,” Quat. Sci. Rev. 115, 78–88 (2015). https://doi.org/10.1016/j.quascirev.2015.03.005

    Article  Google Scholar 

  33. Z. C. Yu, “Northern peatland carbon stocks and dynamics: a review,” Biogeosciences 9 (10), 4071–4085 (2012). https://doi.org/doi:10.5194/bg-9-4071-2012

    Article  Google Scholar 

  34. M. Zauft, H. Fell, F. Glaßer, N. Rosskopf, and J. Zeitz, “Carbon storage in the peatlands of Mecklenburg-Western Pomerania, north-east Germany,” Mires Peat 6 (4), 1–12 (2010).

    Google Scholar 

  35. A. Zerva, T. Ball, K. A. Smith, and M. Mencuccini, “Soil carbon dynamics in a Sitka spruce (Picea sitchensis (Bong.) Carr.) chronosequence on a peaty gley,” For. Ecol. Manage. 205 (1–3), 227–240 (2005). https://doi.org/10.1016/j.foreco.2004.10.03536

  36. Y. Zhang and A. E. Hartemink, “Sampling designs for soil organic carbon stock assessment of soil profiles,” Geoderma 307, 220–230 (2017). https://doi.org/10.1016/j.geoderma.2017.08.013

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. N. Lipatov.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by D. Konyushkov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lipatov, D.N., Shcheglov, A.I., Manakhov, D.V. et al. Spatial Variation of Organic Carbon Stocks in Peat Soils and Gleyzems in the Northeast of Sakhalin Island. Eurasian Soil Sc. 54, 226–237 (2021). https://doi.org/10.1134/S1064229321020083

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229321020083

Keywords: