Skip to main content
Log in

The Effects of Temperature and Mineral Nitrogen and Phosphorus on the Decay Processes and Composition of Soil–Bark Substrates

  • SOIL CHEMISTRY
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

The bark of coniferous trees (BCT) is an essential component of the litter in boreal forests. The effects of temperature and mineral additives (N and P) on the rate of BCT decomposition (DecR), its constant (k), total loss of C–CO2, and the changes in BCT chemical composition are assessed in a long-term (12 months) laboratory experiment with soil–bark substrates (SBSs) using three contrasting temperatures (2, 12, and 22°C) and sufficient moisture. The temperature coefficient (Q10) for the mean DecR during the experiment varies from 1.1 to 2.5 depending on temperature range and SBS composition. The effect of temperature was the most pronounced during the first and second months of the experiment, explaining 47% of the DecR variation. At later stages of the experiment, the SBS composition affected by the addition of mineral N and P compounds is the key factor influencing the BCT decomposition; it explains 18–63% of the DecR variance. The maximum losses of C–CO2 (158–187 g С/(kg bark), or 34–41% of the initial С content) are observed at 22°C. Irrespectively of the temperature, the most significant loss of ethanol-soluble compounds (56–64%) is recorded in the variant with the mineral N additive, whereas the cellulose content most significantly decreases (by 64–69%) in the variant with combined application of N and P and is almost independent of temperature. The loss of lignin was insignificant, amounting to only 3–12% of its initial content. The addition of mineral N and P is a key factor stimulating the BCT decomposition, considerably shortening the decomposition time and improving the quality of the resulting substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. E. F. Vedrova, “Organic matter decomposition in forest litters,” Eurasian Soil Sci. 30, 181–188 (1997).

    Google Scholar 

  2. I. S. Geles, Wood Biomass and Principles of Ecologically Acceptable Technologies for Its Chemical-Mechanical Processing (Karelian Scientific Center, Russian Academy of Sciences, Petrozavodsk, 2001) [in Russian].

    Google Scholar 

  3. L. A. Grishina, G. N. Koptsik, and M. I. Makarov, Transformation of Soil Organic Matter (Moscow State University, Moscow, 1990) [in Russian].

    Google Scholar 

  4. A. N. Devyatlovskaya, L. N. Zhuravleva, and N. V. Devyatlovskii, “Recycling of wood bark of woodworking enterprises,” Aktual’n. Probl. Lesn. Kompl., No. 27, 51–54 (2010).

  5. E. A. Kapitsa, E. V. Shorohova, I. V. Romashkin, N. A.  Galibina, K. M. Nikerova, and I. A. Kazartsev, “Decomposition of bark as a part of logging slash after clear-cutting in mixed middle boreal forests,” Contemp. Probl. Ecol. 12, 760–768 (2019). https://doi.org/10.1134/S1995425519070060

    Article  Google Scholar 

  6. M. A. Kuznetsov, “Influence of decomposition conditions and litter composition on the characteristics and reserves of litter in the middle taiga blueberry-sphagnum spruce forest,” Lesovedenie, No. 6, 54–60 (2010).

    Google Scholar 

  7. I. N. Kurganova, V. O. Lopes de Gerenyu, V. A. Ableeva, and S. S. Bykhovets, “Climate of the south of Moscow oblast: current trends and assessment of extremeness,” Fundam. Prikl. Klimatol., No. 4, 62–78 (2017). https://doi.org/10.21513/2410-8758-2017-4-66-82

  8. A. A. Larionova, A. K. Kvitkina, S. S. Bykhovets, V. O. Lopes de Gerenyu, Yu. G. Kolyagin, and V. V. Kaganov, “Influence of nitrogen on mineralization and humification of forest litter in a model experiment,” Lesovedenie, No. 2, 128–139 (2017).

    Google Scholar 

  9. L. G. Nikonova, I. N. Kurganova, V. O. Lopes de Gerenyu, V. A. Zhmurin, and E. A. Golovatskaya, “Influence of abiotic factors on the litter decomposition of peat-forming plants in an incubation experiment,” Vestn. Tomsk. Gos. Univ., Biol., No. 46, 148–170 (2019). https://doi.org/10.17223/19988591/46/8

  10. A. V. Obolenskaya, Z. P. El’nitskaya, and A. A. Leontovich, Laboratory Manual on Chemistry of Wood and Cellulose (Ekologiya, Moscow, 1991) [in Russian].

    Google Scholar 

  11. V. M. Semenov and A. K. Khodzhaeva, “Agroecological functions of plant remains in soil,” Agrokhimiya, No. 7, 63–81 (2006).

    Google Scholar 

  12. O. A. Ul’yanova, A. S. Nechaeva (Babur), and S. V. Khizhnyak, “Transformation of pine bark and compositions based on it,” Vestn. Krasnoyarsk. Gos. Agrar. Univ., No. 11, 126–130 (2009).

  13. O. A. Ul’yanova and V. V. Chuprova, “Mineralization of the bark of various tree species and fertilizer compositions based on it,” Agrokhimiya, No. 2, 33–45 (2015). https://doi.org/10.14258/jcprm.2018043847

    Article  Google Scholar 

  14. L. K. Abbott and A. D. Robson, “Growth of subterranean clover in relation to the formation of endomycorrhizas by introduced and indigenous fungi in a field soil,” New Phytol. 81, 575–585 (1978). https://doi.org/10.1111/j.1469-8137.1978.tb01631.x|

    Article  Google Scholar 

  15. M. L. Alexander, Introduction to Soil Microbiology (Wiley, New York, 1977).

    Google Scholar 

  16. F. E. Allison, Decomposition of Wood and Bark Sawdusts in Soil, Nitrogen Requirements and Effects on Plants: Technical Bulletin No. 1332 (Agricultural Research Service, United States Department of Agriculture, Washington, DC, 1965).

  17. S. D. Allison, M. D. Wallenstein, and M. A. Bradford, “Soil-carbon response to warming dependent on microbial physiology,” Nat. Geosci. 3, 336–340 (2010). https://doi.org/10.1038/NGEO846

    Article  Google Scholar 

  18. F. Amijee, P. B. Tinker, and D. P. Stribley, “The development of endomycorrhizal root systems. VII. A detailed study of effects of soil phosphorus on colonization,” New Phytol. 111, 435–446 (1989).

    Article  Google Scholar 

  19. V. Artursson, R. D. Finlay, and J. K. Jansson, “Interactions between arbuscular mycorrhizal fungi and bacteria and their potential for stimulating plant growth,” Environ. Microbiol. 8, 1–10 (2006). https://doi.org/10.1111/j.1462-2920.2005.00942.x|

    Article  Google Scholar 

  20. C. Baum and F. Makeschin, “Effects of nitrogen and phosphorus fertilization on mycorrhizal formation of two poplar clones (Populus trichocarpa and P. tremula × tremuloides),” J. Plant Nutr. Soil Sci. 163, 491–497 (2000). https://doi.org/10.1002/1522-2624(200010)163:5<491::AID-JPLN491>3.0.CO;2-3

    Article  Google Scholar 

  21. D. K. Benbi and M. K. Khosa, “Effects of temperature, moisture, and chemical composition of organic substrates on C mineralization in soils,” Commun. Soil Sci. Plant Anal. 45 (21), 2734–2753 (2014). https://doi.org/10.1080/00103624.2014.950423

    Article  Google Scholar 

  22. M. A. Bradford, “Thermal adaptation of decomposer communities in warming soils,” Front. Microbiol. 4, 333 (2013). https://doi.org/10.3389/fmicb.2013.00333

    Article  Google Scholar 

  23. B. L. Browning, Methods of Wood Chemistry (Wiley, New York, 1967), Vol. 2. https://doi.org/10.1002/pol.1968.160061112

    Book  Google Scholar 

  24. H. Chen, M. E. Harmon, R. P. Griffiths, and W. Hicks, “Effects of temperature and moisture on carbon respired from decomposing woody roots,” For. Ecol. Manage. 138, 51–64 (2000).

    Article  Google Scholar 

  25. W. K. Cornwell, J. H. C. Cornelissen, S. D. Allison, J. Bauhus, P. Eggleton, C. M. Preston, F. Scarff, J. T. Weedon, C. Wirth, and A. E. Zanne, “Plant traits and wood fates across the globe: rotted, burned, or consumed?” Global Change Biol. 15, 2431–2449 (2009). https://doi.org/10.1111/j.1365-2486.2009.01916.x

    Article  Google Scholar 

  26. T. W. Crowther, L. Boddy, and T. H. Jones, “Outcomes of fungal interactions are determined by soil invertebrate grazers,” Ecol. Lett. 14, 1134–1142 (2011). https://doi.org/10.1111/j.1461-0248.2011.01682.x

    Article  Google Scholar 

  27. C. W. Dence, “The determination of lignin,” in Methods of Lignin Chemistry (Springer-Verlag, Berlin, 1992), pp. 33–61. https://doi.org/10.1007/978-3-642-74065-7_3

  28. K. Fog, “The effect of added nitrogen on the rate of decomposition of organic matter,” Biol. Rev. 63, 433–462 (1988).

    Article  Google Scholar 

  29. J. A. Forrester, D. J. Mladenoff, S. T. Gower, and J. L. Stoffel, “Interactions of temperature and moisture with respiration from coarse woody debris in experimental forest canopy gaps,” For. Ecol. Manage. 265, 124–132 (2012). https://doi.org/10.1016/j.foreco.2011.10.038

    Article  Google Scholar 

  30. M. O. Gessner, C. M. Swan, C. K. Dang, B. G. McKie, R. D. Bardgett, D. H. Wall, and S. Hattenschwiler, “Diversity meets decomposition,” Trends Ecol. Evol. 25, 372–380 (2010). https://doi.org/10.1016/j.tree.2010.01.010

    Article  Google Scholar 

  31. M. E. Harmon, J. F. Franklin, F. J. Swanson, P. Sollins, S. V. Gregory, N. G. Lattin, J. R. Sedell, G. W. Lienkaemper, K. Cromack Jr., and K. W. Cummins, “Ecology of coarse woody debris in temperate ecosystems,” Adv. Ecol. Res. 15, 133–302 (1986).

    Article  Google Scholar 

  32. S. E. Hobbie and P. M. Vitousek, “Nutrient limitation of decomposition in Hawaiian forests,” Ecology 81, 1867–1877 (2000). https://doi.org/10.1890/0012-9658(2000)081[1867:NLODIH]2.0.CO;2

    Article  Google Scholar 

  33. V. J. G. Houba, Th. M. Lexmond, I. Novozamsky, and J. J. van der Lee, “State of the art and future developments in soil analysis for bioavailability assessment,” Sci. Total Environ. 178, 21–28 (1996). https://doi.org/10.1016/0048-9697(95)04793-X

    Article  Google Scholar 

  34. Z. Hu, C. Xu, N. G. McDowell, D. J. Johnson, M. Wang, Y. Luo, X. Zhou, and Z. Huang, “Linking microbial community composition to C loss rates during wood decomposition,” Soil Biol. Biochem. 104, 108–116 (2017). https://doi.org/10.1016/j.soilbio.2016.10.017

    Article  Google Scholar 

  35. M. Jomura, Y. Kominami, K.Tamai, T. Miyama, Y. Goto, M. Dannoura, and Y. Kanazawa, “The carbon budget of coarse woody debris in a temperate broad-leaved secondary forest in Japan,” Tellus B 59, 211–222 (2007). https://doi.org/10.1111/j.1600-0889.2006.00234.x

    Article  Google Scholar 

  36. T. Kahl, T. Arnstadt, K. Baber, C. Bässler, J. Bauhus, W. Borken, F. Buscot, A. Floren, C. Heibl, D. Hessenmöller, M. Hofrichter, B. Hoppe, H. Kellner, D. Krüger, K. E. Linsenmair, et al., “Wood decay rates of 13 temperate tree species in relation to wood properties, enzyme activities and organismic diversities,” Forest Ecol. Manage. 391, 86–95 (2017). https://doi.org/10.1016/j.foreco.2017.02.012

    Article  Google Scholar 

  37. T. Kätterer, M. Reichstein, O. Andren, and A. Lomander, “Temperature dependence of organic matter decomposition: a critical review using literature data analyzed with different model,” Biol. Fertil. Soils 27, 258–262 (1998).

    Article  Google Scholar 

  38. I. Kazartsev, E. Shorohova, E. Kapitsa, and E. Kushnevskaya, “Decaying Picea abies log bark hosts diverse fungal communities,” Fungal Ecol. 33, 1–12 (2018). https://doi.org/10.1016/j.funeco.2017.12.005

    Article  Google Scholar 

  39. M. Knorr, S. D. Frey, and P. S. Curtis, “Nitrogen additions and litter decomposition: a meta-analysis,” Ecology 86, 3252–3257 (2005). https://doi.org/10.1890/05-0150

    Article  Google Scholar 

  40. I. N. Kurganova, V. O. Lopes de Gerenyu, J. F. Gallardo Lancho, and C. T. Oehm, “Evaluation of the rates of soil organic matter mineralization in forest ecosystems of temperate continental, Mediterranean, and tropical monsoon climates,” Eurasian Soil Sci. 45, 68–79 (2012). https://doi.org/10.1134/S1064229312010085

    Article  Google Scholar 

  41. I. Kurganova, V. Lopes de Gerenyu, N. Galibina, E. Kapitsa, and E. Shorohova, “Coupled effect of temperature and mineral additions facilitates decay of aspen bark,” Geoderma 316, 27–37 (2018). https://doi.org/10.1016/j.geoderma.2017.12.014

    Article  Google Scholar 

  42. A. A. Larionova, A. N. Maltseva, V. O. Lopes de Gerenyu, A. K. Kvitkina, S. S. Bykhovets, B. N. Zolotareva, and V. N. Kudeyarov, “Effect of temperature and moisture on the mineralization and humification of leaf litter in a model incubation experiment,” Eurasian Soil Sci. 50, 422–431 (2017). https://doi.org/10.1134/S1064229317020089

    Article  Google Scholar 

  43. L. G. Nikonova, E. A. Golovatskaya, I. V. Kur’ina, and I. N. Kurganova, “Decomposition rate of peat-forming plants in oligotrophic bogs of the southern taiga subzone of Western Siberia: assessment of the effect of water table level and peat deposit temperature,” Eurasian Soil Sci. 52, 1101–1111 (2019). https://doi.org/10.1134/S1064229319090060

    Article  Google Scholar 

  44. T. Ohtsuka, Y. Shizu, M. Hirota, Y. Yashiro, J. Shugang, Y. Iimura, and H. Koizumi, “Role of coarse woody debris in the carbon cycle of Takayama forest, central Japan,” Ecol. Res. 29, 91–101 (2014). https://doi.org/10.1007/s11284-013-1102-5

    Article  Google Scholar 

  45. S. Olajuyigbe, B. Tobin, and M. Nieuwenhuis, “Temperature and moisture effects on respiration rate of decomposing logs in a Sitka spruce plantation in Ireland,” Forestry 85 (4), 485–496 (2012). https://doi.org/10.1093/forestry/cps045

    Article  Google Scholar 

  46. J. Olson, “Energy storage and the balance of producers and decomposers in ecological systems,” Ecology 44 (2), 322–331 (1963). https://doi.org/10.2307/1932179

    Article  Google Scholar 

  47. M. Palviainen, R. Laiho, H. Mäkinen, and L. Finér, “Do decomposing Scots pine, Norway spruce, and silver birch stems retain nitrogen?” Can. J. For. Res. 38 (12), 3047–3055 (2008). https://doi.org/10.1139/X08-147

    Article  Google Scholar 

  48. A. F. Plante, “Soil biogeochemical cycling of inorganic nutrients and metals,” in Soil Microbiology, Ecology and Biochemistry (Elsevier, New York, 2005), pp. 389–432.

    Google Scholar 

  49. R. G. Qualls and C. J. Richardson, “Phosphorus enrichment affects litter decomposition, immobilization, and soil microbial phosphorus in wetland mesocosms,” Soil Sci. Soc. Am. J. 64, 799–808 (2000). https://doi.org/10.2136/sssaj2000.642799x

    Article  Google Scholar 

  50. I. Romashkin, E. Shorohova, E. Kapitsa, N. Galibina, and K. Nikerova, “Carbon and nitrogen dynamics along the log bark decomposition continuum in a mesic old-growth boreal forest,” Eur. J. For. Res. 137 (5), 643–657 (2018). https://doi.org/10.1007/s10342-018-1131-2

    Article  Google Scholar 

  51. M. A. Rubenstein, T. W. Crowther, D. S. Maynard, J. S. Schilling, and M. A. Bradford, “Decoupling direct and indirect effects of temperature on decomposition,” Soil Biol. Biochem. 112, 110–116 (2017). https://doi.org/10.1016/j.soilbio.2017.05.005

    Article  Google Scholar 

  52. V. M. Semenov, N. B. Pautova, T. N. Lebedeva, D. P. Khromychkina, N. A. Semenova, and V. O. Lopes de Gerenyu, “Plant residues decomposition and formation of active organic matter in the soil of the incubation experiments,” Eurasian Soil Sci. 52, 1183–1194 (2019). https://doi.org/10.1134/S1064229319100119

    Article  Google Scholar 

  53. E. Shorohova, E. Kapitsa, I. Kazartsev, I. Romashkin, A. Polevoi, and A. Kushnevskaya, “Tree species traits are the predominant control on the decomposition rate of tree log bark in a mesic old-growth boreal forest,” For. Ecol. Manage. 377, 36–45 (2016). https://doi.org/10.1016/j.foreco.2016.06.036

    Article  Google Scholar 

  54. R. L. Sinsabaugh, R. K. Antibus, A. E. Linkins, C. A. McClaugherty, L. Rayburn, D. Repert, and T. Weiland, “Wood decomposition: nitrogen and phosphorus dynamics in relation to extracellular enzyme activity,” Ecology 74, 1586–1593 (1993). https://doi.org/10.2307/1940086

    Article  Google Scholar 

  55. R. L. Sinsabaugh, R. K. Antibus, A. E. Linkins, L. Rayburn, D. Repert, and T. Weiland, “Wood decomposition over a first-order watershed: mass loss as a function of exoenzyme activity,” Soil Biol. Biochem. 24, 743–749 (1992). https://doi.org/10.1016/0038-0717(92)90248-V

    Article  Google Scholar 

  56. J. Skonieczna, S. Małek, K. Polowy, and A. Węgiel, “Elements content of Scots pine (Pinus sylvestris L.) stands of different densities,” Drewno Pr. Nauk. Doniesienia Komun. 57 (192), 77–87 (2014). https://doi.org/10.12841/wood.1644-3985.S13.05

    Article  Google Scholar 

  57. M. Stefano, J. A. Trofymow, R. B. Jackson, and A. Porporato, “Stoichiometric controls on carbon, nitrogen, and phosphorus dynamics in decomposing litter,” Ecol. Monogr. 80 (1), 89–106 (2010). https://www. jstor.org/stable/27806875

    Article  Google Scholar 

  58. K. H. Tan, Soil Sampling, Preparation, and Analysis (CRC Press, Boca Raton, FL, 2005)). https://trove.nla. gov.au/work/9640029

    Book  Google Scholar 

  59. B. R. Taylor and D. Parkinson, “Aspen and pine leaf litter decomposition in laboratory microcosms. II. Interactions of temperature and moisture level,” Can. J. Bot. 66, 1966–1973 (1988). https://doi.org/10.1139/b88-269

    Article  Google Scholar 

  60. C. Thongjoo, S. Miyagawa, and N. Kawakubo, “Effects of soil moisture and temperature on decomposition rates of some waste materials from agriculture and agro-industry,” Plant Prod. Sci. 8 (4), 475–481 (2005). https://doi.org/10.1626/pps.8.475

    Article  Google Scholar 

  61. R. Wang, D. Goll, Y. Balkanski, D. Hauglustaine, O. Boucher, P. Ciais, I. Janssens, J. Penuelas, B. Guenet, J. Sardans, L. Bopp, N. Vuichard, F. Zhou, B. Li, S. Piao, S. Peng, Y. Huang, and S. Tao, “Global forest carbon uptake due to nitrogen and phosphorus deposition from 1850 to 2100,” Global Change Biol. 23 (11), 4854–4872 (2017). https://doi.org/10.1111/gcb.13766

    Article  Google Scholar 

  62. J. T. Weedon, W. K. Cornwell, J. H. C. Cornelissen, A. E. Zanne, C. Wirth, and D. A. Coomes, “Global meta-analysis of wood decomposition rates: a role for trait variation among tree species?” Ecol. Lett. 12, 45–56 (2009). https://doi.org/10.1111/j.1461-0248.2008.01259.x

    Article  Google Scholar 

  63. J. P. Winckler, R. S. Cherry, and W. H. Schlesinger, “The Q10 relationship of microbial respiration in a temperate forest soil,” Soil Biol. Biochem. 28 (8), 1067–1072 (1996). https://doi.org/10.1016/0038-0717(96)00076-4

    Article  Google Scholar 

  64. J. Wu, X. Zhang, H. Wang, J. Sun, and D. Guan, “Respiration of downed logs in an old-growth temperate forest in north-eastern China,” Scand. J. For. Res. 25, 500–506 (2010). https://doi.org/10.1080/02827581.2010.524166

    Article  Google Scholar 

  65. T. K. Yoon, S. Han, D. Lee, S. H. Han, N. J. Noh, and Y. Son, “Effects of sample size and temperature on coarse woody debris respiration from Quercus variabilis logs,” J. For. Res. 19 (2), 249–259 (2014). https://doi.org/10.1007/s10310-013-0412-3

    Article  Google Scholar 

  66. L. Zhou, L. Dai, H. Gu, and L. Zhong, “Review on the decomposition and influence factors of coarse woody debris in forest ecosystem,” J. For. Res. 18 (1), 48–54 (2007). https://doi.org/10.1007/s11676-007-0009-9

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to the experts from the Analytical Laboratory of the Forest Research Institute, Karelian Research Center, Russian Academy of Sciences, for performing chemical and biochemical analyses.

Funding

The work was carried out in frames of the state research programs of the Pushchino Biological Research Center, Russian Academy of Sciences (no. AAAA-A18-118013190177-9) and Karelian Research Center, Russian Academy of Sciences and financially supported by Russian Basic Science Foundation (RFBR, project no. 19-04-01282a).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. O. Lopes de Gerenyu.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by G. Chirikova

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lopes de Gerenyu, V.O., Kurganova, I.N., Galibina, N.A. et al. The Effects of Temperature and Mineral Nitrogen and Phosphorus on the Decay Processes and Composition of Soil–Bark Substrates. Eurasian Soil Sc. 54, 49–62 (2021). https://doi.org/10.1134/S1064229321010087

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229321010087

Keywords:

Navigation