Skip to main content
Log in

Soil Structuring in the Presence of the Chitosan–Polyacrylic Acid Interpolymer Complex

  • SOIL PHYSICS
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

This article presents the results of the study of a new soil structuring agent—the interpolymer complex of a chitosan biopolymer and a synthetic polymer of polyacrylic acid—applied to the surface layer of a light chestnut soil (Kastanozem) in the East Kazakhstan region. The interpolymer complex was obtained by mixing equimolar polymer solutions. The composition of the [chitosan] : [polyacrylic acid] complex was determined by the physical and chemical methods and was equal to [1] : [9]. The mechanical strength of the interpolymer complex film was higher in comparison with the films of individual polymers. When applying the interpolymer complex on the soil surface by a two-solution method, a significant improvement of the structure and deflation resistance of the soil was observed. The resulting soil structural elements showed significant resistance to water erosion, which was about 99%. The obtained results indicate the possibility of using interpolymer complexes for structure formation and improving the anti-erosion properties of degraded soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. A. E. Baishanova and B. Sh. Kedel’baev, “Problems of soil degradation. Analysis of the modern state of fertility of irrigated soils in the Republic of Kazakhstan,” Nauchn. Obozr. Biol. Nauki, No. 2, 5–13 (2016).

    Google Scholar 

  2. L. V. Boitsova, “The structural composition of soddy-podzolic soils under different land uses,” Agrofizika, No. 1, 10–19 (2017).

    Google Scholar 

  3. A. F. Vadyunina and Z. A. Korchagina, Manual for the Study of Soil Physical Properties (Agropromizdat, Moscow, 1986) [in Russian].

    Google Scholar 

  4. L. A. Voevodina, “Soil structure and the factors of its transforming under the impact of irrigation,” Nauchn. Zh. Ross. Nauchno-Issled. Inst. Probl. Melior., No. 1 (21), 134–154 (2016).

  5. L. A. Vorob’eva, Chemical Analysis of Soils (Moscow State Univ., Moscow, 1998) [in Russian].

    Google Scholar 

  6. V. A. Izumrudov, V. A. Kasaikin, L. N. Yermakova, and A. B. Zezin, “Study of water-soluble polyelectrolyte complexes of nonequimolar composition,” Polym. Sci. U.S.S.R. 20, 4524–460 (1978).

    Article  Google Scholar 

  7. V. A. Izumrudov, B. Kh. Mussabayeva, Zh. S. Kassymova, A. N. Klivenko, and L. K. Orazzhanova, “Interpolyelectrolyte complexes: advances and prospects of application,” Russ. Chem. Rev. 88, 1046–1062 (2019). https://doi.org/10.1070/RCR4877

    Article  Google Scholar 

  8. V. A. Kabanov, A. B. Zezin, V. A. Kasaikin, A. A. Yaroslavov, and D. A. Topchiev, “Polyelectrolytes in the solution of ecological problems,” Russ. Chem. Rev. 60, 288–291 (1991).

    Article  Google Scholar 

  9. V. A. Kabanov, “Polyelectrolyte complexes in solution and in bulk,” Russ. Chem. Rev. 74, 3–20 (2005).

    Article  Google Scholar 

  10. L. O. Karpachevskii, “Soil structure and modern methods for its examination,” Eurasian Soil Sci. 42, 1423–1424 (2009).

    Article  Google Scholar 

  11. Zh. S. Kassymova, L. K. Orazzhanova, A. N. Klivenko, B. Kh. Mussabayeva, and D. K. Aserzhanov, “Preparation and properties of interpolymer complexes capable of soil structuring,” Russ. J. Appl. Chem. 92, 208–217 (2019). https://doi.org/10.1134/S107042721902006X

  12. A. K. Kurishbaev and G. A. Zvyagin, “Ability of soil particles to self-aggregation under different tillage systems in Northern Kazakhstan,” Mezhdunar. Nauchno-Issled. Zh., No. 2 (56), 76–80 (2017). https://doi.org/10.23670/IRJ.2017.56.001

  13. Yu. A. Kuchina, N. V. Dolgopolova, V. Yu. Novikov, V. A. Sagaidachnyi, and N. N. Morozov, “Instrumental methods of determination of the degree of chitin deacetylation,” Vestn. Mosk. Gos. Tekh. Univ. 15 (1), 107–113 (2012.

    Google Scholar 

  14. E. A. Litmanovich, S. O. Zakharchenko, G. V. Stoychev, and A. B. Zezin, “Phase separation in a poly(acrylic acid)-polycation system in acidic solutions,” Polym. Sci., Ser. A 51, 616–621 (2009). https://doi.org/10.1134/S0965545X09060054

    Article  Google Scholar 

  15. V. G. Mineev, Practical Manual on Agrochemistry (Moscow State Univ., Moscow, 2001) [in Russian].

    Google Scholar 

  16. B. Kh. Mussabayeva, A. N. Klivenko, Zh. S. Kasymova, and L. K. Orazzhanova, “The use of interpolymer complexes for environmental purposes,” Khim. Zh. Kazakh., No. 4, 187–204 (2018).

  17. E. V. Popova, N. S. Domnina, N. M. Kovalenko, E. A. Borisova, L. E. Kolesnikov, and S. L. Tyuterev, “Biological activity of chitosan with different molecular weights,” Vestn. Zashch. Rast., No. 3 (93), 28–33 (2017).

  18. Consolidated Analytical Report on the State and Use of Land in the Republic of Kazakhstan for 2017 (Committee for Land Management, Astana, 2018) [in Russian].

  19. V. A. Kholodov, “The capacity of soil particles for spontaneous formation of macroaggregates after a wetting-drying cycle,” Eurasian Soil Sci. 46, 660–667 (2013).

    Article  Google Scholar 

  20. A. I. Chursin and K. V. Nezvanova, “Combat soil degradation in Russia,” Mezhdunar. Zh. Prikl. Fundam. Issled., No. 6 (1), 88–91 (2016).

  21. A. Sh. Sharipova, G. N. Artikova, O. M. Seitnazarova, and Sh. S. Azhiniyazova, “The fixation mechanism of polyelectrolyte macromolecules on soil particles,” Nauka, Tekh. Obraz., No. 6 (24), 19–21 (2016).

  22. E. V. Shein, Soil Physics (Moscow State Univ., Moscow, 2005) [in Russian].

    Google Scholar 

  23. R. Aguilar, J. Nakamatsu, E. Ramírez, M. Elgegren, J. Ayarza, S. Kim, M. A. Pando, and L. Ortega-San-Martin, “The potential use of chitosan as a biopolymer additive for enhanced mechanical properties and water resistance of earthen construction,” Constr. Build. Mater. 114, 625–637 (2016). https://doi.org/10.1016/j.conbuildmat.2016.03.218

    Article  Google Scholar 

  24. S. Aidarova, N. Bekturganova, M. Kerimkulova, K. Musabekov, and A. Sharipova, “Structure formation of the surface layer of soil as a way to prevent a wind and water erosion,” Eurasian Chem.-Technol. J. 14, 321–325 (2012). https://doi.org/10.18321/ectj129

    Article  Google Scholar 

  25. A. Alsanad, Novel Biopolymer Treatment for Wind Induced Soil Erosion (Arizona State University, Phoenix, 2011).

    Google Scholar 

  26. T. Gümüşoğlu, G. A. Ari, and H. Deligöz, “Investigation of salt addition and acid treatment effects on the transport properties of ionically cross-linked polyelectrolyte complex membranes based on chitosan and polyacrylic acid,” J. Membr. Sci. 376 (1–2), 25–34 (2011). https://doi.org/10.1016/j.memsci.2011.03.040

    Article  Google Scholar 

  27. N. Hataf, P. Ghadir, and N. Ranjbar, “Investigation of soil stabilization using chitosan biopolymer,” J. Clean. Prod. 170, 1493–1500 (2018). https://doi.org/10.1016/j.jclepro.2017.09.256

    Article  Google Scholar 

  28. Zh. S. Kassymova, L. K. Orazzhanova, B. B. Bayakhmetova, B. S. Gaisina, N. B. Kassenova, and G. T. Yelemessova, “Preparation of interpolymer complexes of chitosan and sodium alginate,” Bull. Univ. Karaganda-Chem. 93 (1), 17–24 (2019). https://doi.org/10.31489/2019Ch1/17-24

    Article  Google Scholar 

  29. G. I. Mukhamedov, M. M. Xafizov, and S. Ya. Inagamov, Interpolymer Complexes. Structure, Properties, Application (LAP Lambert Academic, Saarbrucken, 2018).

    Google Scholar 

  30. I. Panova, A. Drobyazko, and V. Spiridonov, “Humics-based interpolyelectrolyte complexes for antierosion protection of soil: model investigation,” Land Degrad. Dev. 30 (3), 337–347 (2019). https://doi.org/10.1002/ldr.3228

    Article  Google Scholar 

  31. I. G. Panova, A. V. Sybachina, and V. V. Spiridonova, “Non-stoichiometric interpolyelectrolyte complexes: promising candidates for protection of soils,” Geoderma 307, 91–97 (2017). https://doi.org/10.1016/j.geoderma.2017.08.001

    Article  Google Scholar 

  32. L. Ya. Zakharova, E. A. Vasilieva, G. A. Gaynanova, A. B. Mirgorodskaya, A. R. Ibragimova, V. V. Salnikov, I. F. Uchegbu, A. I. Konovalov, and Yu. F. Zuev, “The polyacrylic acid/modified chitosan capsules with tunable release of small hydrophobic probe and drug,” Colloids Surf. A 471, 93–100 (2015). https://doi.org/10.1016/j.colsurfa.2015.02.016

    Article  Google Scholar 

  33. A. B. Zezin, S. V. Mikheikin, V. B. Rogacheva, M. F. Zansokhova, A. V. Sybachin, and A. A. Yaroslavov, “Polymeric stabilizers for protection of soil and ground against wind and water erosion,” Adv. Colloids Interface Sci. 226, 17–23 (2015). https://doi.org/10.1016/j.cis.2015.06.006

    Article  Google Scholar 

Download references

Funding

This study was supported by the Ministry of Education and Science of the Republic of Kazakhstan, project no. AP05134681.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zh. S. Kassymova.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by V. Klyueva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Orazzhanova, L.K., Kassymova, Z.S., Mussabayeva, B.K. et al. Soil Structuring in the Presence of the Chitosan–Polyacrylic Acid Interpolymer Complex. Eurasian Soil Sc. 53, 1773–1781 (2020). https://doi.org/10.1134/S1064229320120091

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229320120091

Keywords:

Navigation