Skip to main content
Log in

Quantitative Estimates of Paleoenvironmental Changes in the Late Holocene in the South of the East European Plain as Recorded in the Magnetic Properties of Soils

  • GENESIS AND GEOGRAPHY OF SOILS
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

Information about the past evolutionary changes in the soil cover is essential as a retrospective basis for long-term forecasts of soil development under the changing climatic conditions, and also for understanding the present-day problems of desertification and land degradation in the south of the East European Plain. The principal task of the present study was to estimate quantitatively the shift of the boundary between the steppe and desert-steppe zones in this region during the late Holocene under the impact of global climate variations. The properties of about 100 paleosols of archaeological sites widely represented in the region were used for quantitative reconstruction of paleoprecipitation, paleotemperature, and climate aridity. To obtain regional calibrations, the dependences of the magnetic properties of modern soils on climatic parameters in the south of the East European Plain were analyzed in detail. Samples of 35 soil profiles along the 1500-km-long Voronezh–Volgograd–Astrakhan–Elista–Voronezh transect were used. This transect crosses several natural climatic zones with gradients in the annual precipitation of about 500 mm/yr and in the annual temperatures of about 3°C, which allowed us to obtain reliable relationships between the climatic parameters and the properties of recent soils. Limitations for paleoclimate reconstructions based on the magnetic properties of soils in the range of mean annual precipitation <600 mm/year were identified. Cartographic reconstruction of changes in the De Martonne aridity index (IDM) using GIS modeling methods and paleopedological data indicates that the Volga–Don interfluve has undergone repeated changes in the climatic situation over the past 5000 years resulting in the shifts of the boundaries between soil-geographical zones to distances of up to 200–300 km.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. A. L. Aleksandrovskii, Holocene Evolution of Soils in the East European Plain (Nauka, Moscow, 1983) [in Russian].

    Google Scholar 

  2. A. L. Aleksandrovskii and E. I. Aleksandrovskaya, Evolution of Soils and the Geographic Environment (Nauka, Moscow, 2005) [in Russian].

    Google Scholar 

  3. A. O. Alekseev, T. V. Alekseeva, and B. A. Maher, “Magnetic properties and mineralogy of iron compounds in steppe soils,” Eurasian Soil Sci. 36, 59–70 (2003).

    Google Scholar 

  4. A. O. Alekseev and T. V. Alekseeva, Iron Oxidogenesis in Steppe Soils (GEOS, Moscow, 2012) [in Russian].

    Google Scholar 

  5. A. O. Alekseev, P. I. Kalinin, and T. V. Alekseeva, “Soil indicators of paleoenvironmental conditions in the south of the East European Plain in the Quaternary time,” Eurasian Soil Sci. 52, 349–358 (2019).

    Article  Google Scholar 

  6. V. F. Babanin, V. I. Trukhin, L. O. Karpachevskii, A. V. Ivanov, and V. V. Morozov, Magnetism of Soils (Yaroslavl State Technical Univ., Yaroslavl, 1995) [in Russian].

    Google Scholar 

  7. M. I. Budyko, Thermal Balance of the Earth Surface (Gidrometeoizdat, Leningrad, 1956) [in Russian].

    Google Scholar 

  8. A. A. Velichko, Change of Climate and Landscapes over Last 65 Million Years (GEOS, Moscow, 1999) [in Russian].

    Google Scholar 

  9. B. V. Vinogradov, “Desertification: a problem of steppe zone of Russia,” Stepn. Byull., Nos. 3–4, 55–58 (1999).

    Google Scholar 

  10. A. N. Gennadiev and I. V. Ivanov, “Soil evolution and paleosol science: problems, concepts, and study methods,” Pochvovedenie, No. 10, 34–43 (1989).

    Google Scholar 

  11. Global Climate and Soil Cover of Russia: Desertification and Degradation of Lands, Institutional, Infrastructure, and Technological Adaptation Activities (Agriculture and Forestry): National Report, Ed. by R.S.-Kh. Edel’geriev (MBA, Moscow, 2019), Vol. 2.

    Google Scholar 

  12. V. A. Demkin, Ya. G. Ryskov, A. O. Alekseev, S. A. Oleinik, and S. V. Gubin, “Paleopedological analysis of archaeological monuments in the steppe zone,” Izv. Akad. Nauk SSSR, Ser. Geogr., No. 6, 40–51 (1989).

  13. V. A. Demkin, Soil Science and Archeology (Pushchino, 1997) [in Russian].

    Google Scholar 

  14. V. A. Demkin, M. V. El’tsov, A. O. Alekseev, T. V. Alekseeva, T. S. Demkina, and A. V. Borisov, “Soil development in the Lower Volga area during the historical period,” Eurasian Soil Sci. 37, 1324–1333 (2004).

    Google Scholar 

  15. V. N. Dimo, Thermal Regime of Soils of the USSR (Kolos, Moscow, 1972) [in Russian].

    Google Scholar 

  16. I. V. Ivanov, Evolution of Steppe Soils in the Holocene (Nauka, Moscow, 1992) [in Russian].

    Google Scholar 

  17. A. G. Isachenko, Landscape Science and Physical-Geographic Zonation (Vysshaya Shkola, Moscow, 1991) [in Russian].

    Google Scholar 

  18. S. A. Sycheva and O. A. Chichagova, “Cyclic rhythms of soil formation in the Central Russian,” Eurasian Soil Sci. 32, 875–883 (1999).

    Google Scholar 

  19. Handbook on Climate of the USSR (Gidrometeoizdat, Leningrad, 1967), No. 13.

  20. Yu. G. Chendev, I. V. Ivanov, and L. S. Pesochina, “Trends of the natural evolution of chernozems on the East European Plain,” Eurasian Soil Sci. 43, 728–736 (2010).

    Article  Google Scholar 

  21. T. Alekseeva, A. Alekseev, B. A. Maher, and V. Demkin, “Late Holocene climate reconstructions for the Russian steppe based on mineralogical and magnetic properties of buried palaesols,” Palaeogeogr., Palaeoclimatol., Palaeoecol. 249, 103–127 (2007).

    Article  Google Scholar 

  22. E. De Martonne, “Aréisme et indice d’ariditè,” Compt. Rend. Acad. Sci. 182, 1395–1398 (1926).

    Google Scholar 

  23. Encyclopedia of Climatology, Ed. by J. E. Oliver and R. W. Fairbridge (van Nostrand Reinold, New York, 1987), Vol. 11.

  24. E. Hyland, N. D. Sheldon, R. van der Voo, C. Badgley, and A. Abrajevitch, “A new paleoprecipitation proxy based on soil magnetic properties: implications for expanding paleoclimate reconstructions,” Geol. Soc. Am. Bull. 127, 975–981 (2015). https://doi.org/10.1130/B31207.1

    Article  Google Scholar 

  25. I. Harris, P. D. Jones, T. J. Osborn, and D. H. Lister, “Updated high-resolution grids of monthly climatic observations—the CRU TS3.10 Dataset,” Int. J. Climatol. 34, 623–642 (2014).

    Article  Google Scholar 

  26. R. J. Hijmans, S. E. Cameron, J. L. Parra, P. J. Jones, and A. Jarvis, “Very high resolution interpolated climate surfaces for global land areas,” Int. J. Climatol. 25 (15), 1965–1978 (2005).

    Article  Google Scholar 

  27. T. M. Gallagher and N. D. Sheldon, “A new paleothermometer for forest paleosols and its implications for Cenozoic climate,” Geology 41, 647–650 (2013).

    Article  Google Scholar 

  28. F. N. Lisetskii, P. V. Goleusov, and O. A. Chepelev, “The development of chernozems in the Dniester-Prut interfluve in the Holocene,” Eurasian Soil Sci. 46, 491–504 (2013).

    Article  Google Scholar 

  29. F. N. Lisetskii, V. F. Stolba, and V. I. Pichura, “Late-Holocene palaeoenvironments of Southern Crimea: soils, soil-climate relationship and human impact,” Holocene 27 (12), 1859–1875 (2017).

    Article  Google Scholar 

  30. J. A. Lutz, J. W. van Wagtendonk, and J. F. Franklin, “Climatic water deficit, tree species ranges, and climate change in Yosemite National Park,” J. Biogeogr. 37, 936–950 (2010).

    Article  Google Scholar 

  31. B. A. Maher, A. O. Alekseev, and T. V. Alekseeva, “Climate dependence of soil magnetism across the Russian steppe: significance for use of soil magnetism as a palaeoclimatic proxy,” Quat. Sci. Rev. 21, 1571–1576 (2002).

    Article  Google Scholar 

  32. B. A. Maher, A. Alekseev, and T. Alekseeva, “Magnetic mineralogy of soils across the Russian steppe: climatic dependence of pedogenic magnetite formation,” Palaeogeogr., Palaeoclimatol., Palaeoecol. 201 (3–4), 321–341 (2003).

    Article  Google Scholar 

  33. B. Maher and A. Possolo, “Statistical models for use of palaeosol magnetic properties as proxies of palaeorainfall,” Global Planet. Change 12, 280–287 (2013).

    Article  Google Scholar 

  34. D. P. Maxbauer, J. M. Feinberg, and D. L. “Fox, Magnetic mineral assemblages in soils and paleosols as the basis for paleoprecipitation proxies: a review of magnetic methods and challenges,” Earth Science Rev. 155, 28–48 (2016).

    Article  Google Scholar 

  35. M. J. Orgeira, R. Egli, and R. H. Compagnucci, “A quantitative model of magnetic enhancement in loessic soils,” in The Earth’s Magnetic Interior, IAGA Special Sopron Book Series vol. 1 (Springer-Verlag, New York, 2011), pp. 361–397.

    Google Scholar 

  36. G. J. Retallack, Soils of the Past. An Introduction to Paleopedology (Blackwell, Oxford, 2001).

    Google Scholar 

  37. N. D. Sheldon and N. J. Tabor, “Quantitative paleoenvironmental and paleoclimatic reconstruction using paleosols,” Earth-Sci. Rev. 95, 1–52 (2009).

    Article  Google Scholar 

  38. N. J. Tabor and T. S. Myers, “Paleosols as indicators of paleoenvironment and paleoclimate,” Annu. Rev. Earth Planet. Sci. 43, 333–361 (2015).

    Article  Google Scholar 

  39. C. W. Thornthwaite, “An approach toward a rational classification of climate,” Geogr. Rev. 38, 55–94 (1948).

    Article  Google Scholar 

Download references

Funding

This study was supported by the Russian Foundation for Basic Research, projects no. 19-29-05178 and 18-04-00800 (field studies).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. O. Alekseev.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by O. Eremina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alekseev, A.O., Mitenko, G.V. & Sharyi, P.A. Quantitative Estimates of Paleoenvironmental Changes in the Late Holocene in the South of the East European Plain as Recorded in the Magnetic Properties of Soils. Eurasian Soil Sc. 53, 1677–1686 (2020). https://doi.org/10.1134/S1064229320120029

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229320120029

Keywords:

Navigation