Skip to main content
Log in

Analysis of the Informativity of Big Satellite Precision-Farming Data Processing for Correcting Large-Scale Soil Maps

  • GENESIS AND GEOGRAPHY OF SOILS
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

Large-scale soil maps produced by research institutes for land management (GIPROZEM) are the main source of soil information on arable land in Russia. These maps date back to the 1960s–1990s. During the time that has passed since the last round of soil surveys, the development of precision farming has greatly increased the requirements for the accuracy of the maps. At present, archival soil maps require correction (verification, updating, detailing, and unification). It is suggested that the maps of stable intrafield heterogeneity (SIFH) of soil fertility based on the analysis of big remote sensing data can find application in modern agriculture. Such maps are created within the framework of the general concept of big data analysis, including big geodata and big agricultural data as its components. Comparative analysis of archival soil maps and the SIFH map for the territory of southern Russia attests to the great potential of SIFH maps for soil mapping. Missing soil polygons have been detected, the location of existing soil polygons has been refined, new soil units not marked on archival soil maps have been identified, and a plan for additional soil surveys within the framework of the data-driven geography concept has been worked out. The accuracy of the soil map has been improved to be applicable to state-of-the-art farming systems, including precision farming. A new source of information on the spatial heterogeneity of the soil cover and its fertility has appeared.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Analysis and preparation of remote sensing data from open sources for precision farming systems. https:// gisinfo.ru/item/120.htm.

  2. A. V. Bryzzhev, D. I. Rukhovich, P. V. Koroleva, N. V. Kalinina, E. V. Vil’chevskaya, E. A. Dolinina, and S. V. Rukhovich, “Organization of retrospective monitoring of the soil cover in Azov district of Rostov oblast,” Eurasian Soil Sci. 48, 1029–1049 (2015).

    Article  Google Scholar 

  3. Agronomist’s diary, 2018. https://www.avgust.com/ newspaper/topics/detail.php?ID=6860.

  4. Intterra: innovative solutions for agriculture. https:// intterra.ru/ru.

  5. Fertilizer calculator, EuroChem-Novomoskovsk. https:// eurochem-nakazot.ru/calculator/index.html.

  6. P. V. Koroleva, D. I. Rukhovich, A. D. Rukhovich, D. D. Rukhovich, A. L. Kulyanitsa, A. V. Trubnikov, N. V. Kalinina, and M. S. Simakova, “Location of bare soil surface and soil Line on the RED–NIR spectral plane,” Eurasian Soil Sci. 50, 1375–1385 (2017).

    Article  Google Scholar 

  7. P. V. Koroleva, D. I. Rukhovich, A. D. Rukhovich, D. D. Rukhovich, A. L. Kulyanitsa, A. V. Trubnikov, N. V. Kalinina, and M. S. Simakova, “Characterization of soil types and subtypes in N-dimensional space of multitemporal (empirical) soil line,” Eurasian Soil Sci. 51, 1021–1033 (2018).

    Article  Google Scholar 

  8. A. L. Kulyanitsa, A. D. Rukhovich, D. D. Rukhovich, P. V. Koroleva, D. I. Rukhovich, and M. S. Simakova, “The application of the piecewise linear approximation to the spectral neighborhood of soil line for the analysis of the quality of normalization of remote sensing materials,” Eurasian Soil Sci. 50, 387–395 (2017).

    Article  Google Scholar 

  9. C. Lyell, Principles of Geology, 5th ed. (John Murray, London, 1837; Tipogr. E. Barfknekhta i Co, Moscow, 1859).

  10. V. V. Nosov, Economic assessment of the use of mineral fertilizers in Russia in modern conditions, Seminar of Commercial service JSC PhosAgro-Region, Balakovo, May 20, 2015. http://eeca-ru.ipni.net/ipniweb/region/ eecaru.nsf/0/5187B34B53F5AD2E43257E510027CF05/ $FILE/Economic%20assessment%20of%20fertilizer% 20use%20in%20Russia_RUS.pdf.

  11. All-Union Instruction on Soil Studies and Compilation of Large-Scale Soil Maps (Kolos, Moscow, 1973) [in Russian].

  12. JSC Agronout, Skolkovo Community. http://sk.ru/ net/1121390/.

  13. Soil Map of Azov District of Rostov Oblast, Scale 1 : 100000 (Rostov-on-Don, 1978) [in Russian].

  14. Soil Map of Leninskoe Znamya Collective Farm, Azov District of Rostov Oblast, Scale 1 : 25 000 (Southern Branch, State Design and Survey Institute of Land Cadastral Survey, Novocherkassk, 1975) [in Russian].

  15. Soil Map of Luch Sovkhoz, Azov District of Rostov Oblast (Southern Scientific Research and Design Institute of Land Management, Rostov-on-Don, 1984) [in Russian].

  16. Soil Map of Mir TOO, Azov District of Rostov Oblast, Scale 1 : 25000 (Southern Scientific Research and Design Institute of Land Management, Rostov-on-Don, 1994) [in Russian].

  17. D. I. Rukhovich, Candidate’s Dissertation in Biology (Moscow, 2009).

  18. D. I. Rukhovich, V. B. Wagner, E. V. Vil’chevskaya, N. V. Kalinina, and P. V. Koroleva, “Problems of using digitized thematic maps on the territory of the former soviet union upon the creation of the “Soils of Russia” geographic information system,” Eurasian Soil Sci. 44, 957–968 (2011).

    Article  Google Scholar 

  19. D. I. Rukhovich, P. V. Koroleva, E. V. Vilchevskaya, and N. V. Kalinina, “Digital thematic cartography as change of available sources and their use methods,” in Digital Soil Cartography: Theoretical and Experimental Studies (Dokuchaev Soil Science Inst., Russian Academy of Sciences, Moscow, 2012), pp. 58–86.

  20. D. I. Rukhovich, P. V. Koroleva, N. V. Kalinina, E. V. Vil’chevskaya, M. S. Simakova, E. A. Dolinina, and S. V. Rukhovich, “State soil map of the Russian federation: an ArcInfo version,” Eurasian Soil Sci. 46, 225–240 (2013).

    Article  Google Scholar 

  21. D. I. Rukhovich, A. D. Rukhovich, D. D. Rukhovich, M. S. Simakova, A. L. Kulyanitsa, A. V. Bryzzhev, and P. V. Koroleva, “The informativeness of coefficients a and b of the soil line for the analysis of remote sensing materials,” Eurasian Soil Sci. 49, 831–845 (2016).

    Article  Google Scholar 

  22. D. I. Rukhovich, A. D. Rukhovich, D. D. Rukhovich, M. S. Simakova, A. L. Kulyanitsa, A. V. Bryzzhev, and P. V. Koroleva, “Maps of averaged spectral deviations from soil lines and their comparison with traditional soil maps,” Eurasian Soil Sci. 49, 739–756 (2016).

    Article  Google Scholar 

  23. D. I. Rukhovich, M. S. Simakova, A. L. Kulyanitsa, A. V. Bryzzhev, P. V. Koroleva, N. V. Kalinina, E. V. Vil’chevskaya, E. A. Dolinina, and S. V. Rukhovich, “Impact of shelterbelts on the fragmentation of erosional networks and local soil waterlogging,” Eurasian Soil Sci. 47, 1086–1099 (2014).

    Article  Google Scholar 

  24. D. I. Rukhovich, M. S. Simakova, A. L. Kulyanitsa, A. V. Bryzzhev, P. V. Koroleva, N. V. Kalinina, E. V. Vil’chevskaya, E. A. Dolinina, and S. V. Rukhovich, “Use of soil maps for retrospective monitoring of lands and soil cover,” Pochvovedenie, No. 5, 605–625 (2015).

    Google Scholar 

  25. D. I. Rukhovich, M. S. Simakova, A. V. Bryzzhev, P. V. Koroleva, N. V. Kalinina, E. V. Vil’chveskaya, and E. A. Dolinina, “Retrospective analysis of changes in land uses on vertic soils of closed mesodepressions on the Azov plain,” Eurasian Soil Sci. 48, 1050–1075 (2015).

    Article  Google Scholar 

  26. D. I. Rukhovich, M. S. Simakova, A. V. Bryzzhev, P. V. Koroleva, N. V. Kalinina, G. I. Chernousenko, E. V. Vil’chevskaya, E. A. Dolinina, and S. V. Rukhovich, “The influence of soil salinization on land use changes in Azov district of Rostov oblast,” Eurasian Soil Sci. 50, 276–295 (2017).

    Article  Google Scholar 

  27. M. S. Simakova, “Soil maps,” in Cartography of Russia: Topographic and Thematic Maps (Institute of Geography, Russian Academy of Sciences, Moscow, 1999), pp. 113–133.

    Google Scholar 

  28. M. S. Simakova, D. I. Rukhovich, P. V. Koroleva, E. V. Vil’chevskaya, and N. V. Kalinina, “Digitized version of the state soil map on a scale of 1 : 1 M: problems and solutions,” Eurasian Soil Sci. 45, 337–347 (2012).

  29. Compilation and Use of Soil Maps, Ed. by A. D. Kashanskii (Agropromizdat, Moscow, 1987) [in Russian].

    Google Scholar 

  30. Technology of map compilation of intrafield heterogeneity according to retrospective monitoring for map compilation of the tasks for differential fertilization with complex fertilizers, project no. AAAA-G18-618030290009-4, 2018. https://rosrid.ru/rid/YVUTLONSZRTT3KN7ASFCEUEJ.

  31. V. F. Fedorenko, D. I. Rukhovich, P. V. Koroleva, E. V. Vilchevskaya, N. V. Kalinina, A. V. Trubnikov, and N. P. Mishurov, “Assessment of intrafield heterigenity of coil cover for coordinate land farming technology,” Tekh. Oborud. Sela, No. 9 (243), 2–6 (2017).

    Google Scholar 

  32. M. E. Fleis, M. M. Borisov, and M. V. Aleksandrovich, “Cartographic projections and coordination of maps of Russia and the Soviet Union of different times in the geoinformation environment,” Izv. Ross. Akad. Nauk, Ser. Geogr., No. 5, 118–125 (2008).

  33. V. M. Fridland, The Structures of World Soil Cover (Mysl’, Moscow, 1984) [in Russian].

    Google Scholar 

  34. N. B. Khitrov, D. I. Rukhovich, A. V. Bryzzhev, N. V. Kalinina, and L. V. Rogovneva, “The geography of vertisols and vertic soils in the Kuban-Azov Lowland,” Eurasian Soil Sci. 48, 671–688 (2015).

    Article  Google Scholar 

  35. P. V. Koroleva, N. V. Kalinina, D. I. Rukhovich, G. A. Suleiman, and E. A. Dolinina, “Differences in inventories of waterlogged territories in soil surveys of different years and in land management documents,” Eurasian Soil Sci. 53, 294–309 (2020).

    Article  Google Scholar 

  36. D. A. Shapovalov, P. V. Koroleva, G. A. Suleiman, and D. I. Rukhovich, “Soil delineations on public cadaster maps as elements of the soil–land cover mapping,” Eurasian Soil Sci. 52, 566–583 (2019).

    Article  Google Scholar 

  37. D. A. Shapovalov, D. I. Rukhovich, P. V. Koroleva, N. V. Kalinina, E. V. Vilchevskaya, and A. L. Kulyanitsa, “ASF-Index—a map of stable intra-field heterogeneity of soil cover fertility based on big satellite data for precision agriculture tasks,” Mezhdunar. S-kh. Zh., No. 1 (373), (2020).

  38. AGRO-SAT consulting. http://agro-sat.de/.

  39. A. Azabdaftari and F. Sunar, “Soil salinity mapping using multitemporal Landsat data,” Int. Arch. Photogram., Remote Sens. Spatial Inf. Sci. XLI-B7, (2016).

  40. C. De Bernardis, F. Vicente-Guijalba, T. Martinez-Marin, and J. M. Lopez-Sanchez, “Particle filter approach for real-time estimation of crop phenological states using time series of NDVI images,” Remote Sens. 8 (7), 610 (2016).

    Article  Google Scholar 

  41. Big data in agriculture (Intel). https://www.intel.ru/ content/www/ru/ru/big-data/lessons-from-the-field. html.

  42. Big data science for precision farming business. https://semanticommunity.info/Data_Science/Big_ Data_Science_ for_Precision_Farming_Business.

  43. A. De la Casa, G. Ovando, L. Bressanini, J. Martínez, G. Díaz, and C. Miranda, “Soybean crop coverage estimation from NDVI images with different spatial resolution to evaluate yield variability in a plot,” ISPRS J. Photogram. Remote Sens. 146, 531–547 (2018).

    Article  Google Scholar 

  44. M. Cox and D. Ellsworth, “Application-controlled demand paging for out-of-core visualization,” in Proceedings of the 8th Conference on Visualization ’97 (VIS ’97), Los Alamitos, CA (IEEE Computer Society Press, Washington, DC, 1997), pp. 235–244.

  45. Cropio. https://about.cropio.com/ru/.

  46. Digital Soil Mapping: An Introductory Perspective, Ed. by Ph. Lagsherle and A. B. McBratney (Elsevier, Amsterdam, 2007), Vol. 31.

    Google Scholar 

  47. ExactFarming, https://www.exactfarming.com/ru/

  48. J. Farifteh, F. van der Meer, C. Atzberger, and E. Carranza, “Quantitative analysis of salt-affected soil reflectance spectra: a comparison of two adaptive methods (PLSR and ANN),” Remote Sens. Environ. 110 (1), 59–78 (2007). https://doi.org/10.1016/j.rse.2007.02.005

    Article  Google Scholar 

  49. Farm management, Satellite big data: How it is changing the face of precision farming, 2018. http:// www.farmmanagement.pro/satellite-big-data-how-it-is-changing-the-face-of-precision-farming/.

  50. Farmers Edge. https://www.farmersedge.ca/ru/.

  51. B. C. Gallo, J. A. M. Demattê, R. Rizzo, J. L. Safanelli, W. S. de Mendes, I. F. Lepsch, M. V. Sato, D. J. Romero, and M. P. C. Lacerda, “Multi-temporal satellite images on topsoil attribute quantification and the relationship with soil classes and geology,” Remote Sens. 10 (10), 1571 (2018).

    Article  Google Scholar 

  52. A. E. Hartemink, A. C. Moore, D. W. Howell, J. L. Boettinger, and S. Kienast-Brown, Digital Soil Mapping: Bridging Research, Environmental Application, and Operation (Springer-Verlag, New York, 2010).

    Google Scholar 

  53. Y. Huang, Z.-X. Chen, T. Yu, X.-Z. Huang, and X.‑F. Gu, “Agricultural remote sensing big data: management and applications,” J. Integr. Agric. 17 (9), 1915–1931 (2018). https://doi.org/10.1016/S2095-3119(17)61859-8

    Article  Google Scholar 

  54. J. Hutton, “Theory of the Earth; or an investigation of the laws observable in the composition, dissolution, and restoration of land upon the Globe,” Trans. R. Soc. Edinburgh. 1 (2), 209–304 (1788).

    Article  Google Scholar 

  55. B. Johnson, “Effects of pansharpening on vegetation indices,” ISPRS Int. J. Geo-Inf. 3 (2), 507–522 (2014).

    Article  Google Scholar 

  56. A. Kamilaris, A. Kartakoullis, and F. X. Prenafeta-Boldú, “A review on the practice of big data analysis in agriculture,” Comput. Electron. Agric. 143, 23–37 (2017). https://doi.org/10.1016/j.compag.2017.09.037

    Article  Google Scholar 

  57. R. J. Kauth and G. S. Thomas, “The tasselled cap—A graphic description of the spectral-temporal development of agricultural crops as seen by Landsat,” in Proceedings of the Symposium on Machine Processing of Remotely Sensed Data, West Lafayette, Indiana, June 29–July 1, 1976 (Purdue University, West Lafayette, IN, 1976), pp. 4B-41–4B-51.

  58. M.-P. Kwan, “Algorithmic geographies: big data, algorithmic uncertainty, and the production of geographic knowledge,” Ann. Am. Assoc. Geogr. 106 (2), 274–282 (2016).

    Google Scholar 

  59. P. Liu, “A survey of remote-sensing big data,” Front. Environ. Sci. 3, 45 (2015). https://doi.org/10.3389/fenvs.2015.00045

    Article  Google Scholar 

  60. A. B. McBratney, M. L. Mendonça-Santos, and B. Minasny, “On digital soil mapping,” Geoderma 117 (1–2), 3–52 (2003).

    Article  Google Scholar 

  61. M. L. Mendonça-Santos, R. O. Dart, H. G. Santos, M. R. Coelho, R. L. L. Berbara, and J. F. Lumbreras, “Digital soil mapping of topsoil organic carbon content of Rio de Janeiro State. Brazil, in Digital Soil Mapping (Springer-Verlag, New York, 2010), pp. 255–266.

    Google Scholar 

  62. H. J. Miller and M. F. Goodchild, “Data-driven geography,” GeoJournal 80 (4), 449–461 (2015). https://doi.org/10.1007/s10708-014-9602-6

    Article  Google Scholar 

  63. V. L. Mulder, S. de Bruin, M. E. Schaepman, and T. R. Mayr, “The use of remote sensing in soil and terrain mapping—A review,” Geoderma 162, 1–19 (2011).

    Article  Google Scholar 

  64. NASA soil moisture mission produces first global maps. https://www.jpl.nasa.gov/news/news.php?release= 2015-138.

  65. NEXT farming: smarte lösungen für landwirte. https:// www.nextfarming.de/.

  66. NEXT Geodata service. https://www.nextfarming.com/ products/next-farming-service/next-geodata-service/.

  67. S. Openshaw, “Geographical data mining: key design issues,” in Proceedings of the 4th International Conference on GeoComputation, Fredericksburg, Virginia, USA, July 25–28, 1999 (Institute of Electrical and Electronics Engineers, Piscataway, NJ, 1999). http://www.geocomputation.org/1999/051/gc_051.htm.

    Google Scholar 

  68. V. A. Romanenkov, J. U. Smith, P. Smith, O. D. Sirotenko, D. I. Rukhovich, and I. A. Romanenko, “Soil organic carbon dynamics of croplands in European Russia: estimates from the “model of humus balance,” Reg. Environ. Change 7 (2), 93–104 (2007).

    Article  Google Scholar 

  69. D. A. Shapovalov, V. F. Fedorenko, A. V. Trubnikov, P. V. Koroleva, and D. I. Rukhovich, “Maps of stable intra-field heterogeneity based on big satellite data in the precision farming system,” in Proceedings of the 19th International Multidisciplinary Scientific GeoConference SGEM 2019: conference proceedings, Albena, Bulgaria, June 30–July 6, 2019 (Sofia, 2019), Vol. 19, No. 2.2, pp. 903–908.

  70. K. D. Shepherd and M. G. Walsh, “Development of reflectance spectral libraries for characterization of soil properties,” Soil Sci. Soc. Am. J. 66 (3), 988–998 (2002). https://doi.org/10.2136/sssaj2002.9880

    Article  Google Scholar 

  71. SRTM. http://srtm.csi.cgiar.org/.

  72. R. Taghizadeh-Mehrjardi, K. Nabiollahi, B. Minasny, and J. Tnantafilis, “Comparing data mining classifiers to predict spatial distribution of USDA-family soil groups in Baneh region. Iran,” Geoderma 253–254, 67–77 (2015).

    Article  Google Scholar 

Download references

Funding

This study was financially supported by the Russian Foundation for Basic Research, project no. 18-07-00872.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. I. Rukhovich.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by D. Konyushkov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kulyanitsa, A.L., Rukhovich, D.I., Koroleva, P.V. et al. Analysis of the Informativity of Big Satellite Precision-Farming Data Processing for Correcting Large-Scale Soil Maps. Eurasian Soil Sc. 53, 1709–1725 (2020). https://doi.org/10.1134/S1064229320110083

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229320110083

Keywords:

Navigation