Skip to main content
Log in

The Effect of Increasing Active Layer Depth on Changes in the Water Budget in the Cryolithozone

  • DEGRADATION, REHABILITATION, AND CONSERVATION OF SOILS
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

Under the influence of perennial dynamics of soil thawing depth, the upper layer of permafrost periodically thaws and becomes a part of the soil profile in the permafrost zone. In this case, the horizon, which is either frozen or thawed and has a thickness of several tens of centimeters, displays an elevated ice content (moisture). This horizon between the lower boundary of the active layer and the permafrost is named a protective layer or a transient permafrost layer and functions as a buffer that hinders thawing of the ice complex with its high ice content. The study of moisture using soil-regime methods and budget calculations showed that the protective layer of permafrost in sandy and loamy soils (at the depth of 1.5–5 m) contains from 25 to 60 mm (on average, 30 mm) of water in each 10-cm-thick layer of frozen soils under different types of forests in Central Yakutia. An increase in the seasonal thawing depth of permafrost-affected soils under conditions of global climate warming and anthropogenic impacts (forest fires, destruction of forest cover, etc.) causes degradation of the protective layer. The purpose of this article is to show the effect of increasing seasonal thawing depth of permafrost-affected soils on changes in the water content and water budget in permafrost areas because of the release of moisture stored in the protective layer in the context of global climate change. It was found that with an increase in the seasonal thawing depth, the protective layer should release a significant amount of water preserved in permafrost, which may change the water budget of permafrost territories. As calculations show, with an increase in the soil seasonal thawing depth by 20–30 cm on the interfluve areas, the volume of water entering the basins of nearby thermokarst depressions (alases) and rivers from frozen soils may reach 60 000–90 000 m3/km2. The obtained results can be used in modeling and predicting the dynamics of permafrost environments under the global climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. V. M. Alifanov, L. A. Gugalinskaya, and L.A. Ivannikova, “Hydrothermic conditions of functioning of gray soils: assessment and prognosis,” Eurasian Soil Sci. 41, 77–86 (2008).

    Article  Google Scholar 

  2. L. P. Gabysheva and V. V. Protopopova, “Forest fires as an ecological factor of afforestation in Central Yakutia,” Nauka Obraz., No. 2, 50–56 (2006).

  3. M. K. Gavrilova, Climate of Central Yakutia (Yakutsk, 1973) [in Russian].

    Google Scholar 

  4. S. V. Goryachkin, Soil Cover of the North: Patterns, Genesis, Ecology, and Evolution (GEOS, Moscow, 2010) [in Russian].

  5. P. F. Demchenko, A. A. Velichko, G. S. Golitsyn, et al., “Future of permafrost area: insight from the past to the future,” Priroda (Moscow), No. 1, 43–49 (2001).

  6. R. V. Desyatkin, “Climate change and dynamics of permafrost ecosystems in the center of the continental cryolithozone of the northern hemisphere,” Herald Russ. Acad. Sci. 88, 494–501 (2018).

    Article  Google Scholar 

  7. R. V. Desyatkin, A. R. Desyatkin, and P. P. Fedorov, “Temperature regime of permafrost taiga soils of Central Yakutia,” Kriosfera Zemli 16 (2), 70–78 (2012).

    Google Scholar 

  8. V. V. Dokuchaev, Selected Research Works (Sel’khozgiz, Moscow, 1949), Vol. 2.

    Google Scholar 

  9. A. I. Efimov and N. A. Grave, “Buried ice in the area of Abalakh Lake,” Sots. Stroit., No. 10, 65–78 (1940).

  10. D. A. Kaverin, G. G. Mazhitova, and A. V. Pastukhov, “Upper layer of permafrost as a part of the soil profile,” Vestn. Inst. Biol., Yakut. Nauchn. Tsentra, No. 8, 33–36 (2009).

    Google Scholar 

  11. D. A. Kaverin, A. V. Pastukhov, and G. G. Mazhitova, “Temperature regime of tundra soils and underlying permafrost in the European northeast of Russia,” Kriosfera Zemli 18 (3), 23–32 (2014).

    Google Scholar 

  12. N. B. Kakunov and E. I. Sulimova, “Changes in climatic parameters and development of permafrost,” Inzh. Izyskaniya, No. 6, 56–59 (2008).

    Google Scholar 

  13. N. A. Karavaeva, Waterlogging and Evolution of Soils (Nauka, Moscow, 1982) [in Russian].

    Google Scholar 

  14. L. L. Shishov, V. D. Tonkonogov, I. I. Lebedeva, and M. I. Gerasimova, Classification and Diagnostic System of Russian Soils (Oikumena, Smolensk, 2004) [in Russian].

    Google Scholar 

  15. Climate of Yakutsk, Ed. by Ts. A. Shver (Gidrometeoizdat, Leningrad, 1982) [in Russian].

    Google Scholar 

  16. Permafrost Systems of the Alazeya River Basin, Ed. by A. P. Isaev and I. V. Klimovskii (GEO, Novosibirsk, 2018) [in Russian].

    Google Scholar 

  17. G. G. Mazhitova, “Soil temperature regimes in the discontinuous permafrost zone in the east European Russian Arctic,” Eurasian Soil Sci. 41, 48–62 (2008).

    Article  Google Scholar 

  18. G. G. Mazhitova and D. A. Kaverin, “The dynamics of the depth of seasonal thawing and surface soil subsidence at the CALM site in European Russia,” Kriosfera Zemli 11 (4), 20–30 (2007).

    Google Scholar 

  19. G. V. Malkova, “Monitoring of mean annual permafrost temperature at the Bolvanskii station,” Kriosfera Zemli 14 (3), 3–14 (2010).

    Google Scholar 

  20. G. F. Morozov, Theory about Forest (Goslesbumizdat, Moscow, 1949) [in Russian].

    Google Scholar 

  21. A. S. Motorin, “Temperature regime of seasonally frozen soils in the northern Transural region,” Vestn. Gos. Agrar. Univ. Sev. Zaural’ya, No. 2 (25), 63–66 (2014).

    Google Scholar 

  22. A. V. Pavlov, “Permafrost and climate changes in the Russian north: observations and forecast,” Izv. Ross. Akad. Nauk, Ser. Geogr., No. 6, 6, 39–50 (2003).

    Google Scholar 

  23. A. V. Pavlov and N. G. Moskalenko, “Thermal regime of soils in the north of Western Siberia,” Kriosfera Zemli 5 (2), 11–19 (2001).

    Google Scholar 

  24. A. V. Pavlov, G. V. Anan’eva, D. S. Drozdov, N. G. Moskalenko, V. A. Dubrovin, N. B. Kakunov, G. P. Minailov, Yu. B. Skachkov, and P. N. Skryabin, “Monitoring of seasonally thawing layer and permafrost temperature in the north of Russia,” Kriosfera Zemli 6 (4), 30–39 (2002).

    Google Scholar 

  25. N. N. Romanovskii, Fundamentals of Cryogenesis of Lithosphere (Moscow State Univ., Moscow, 1993) [in Russian].

    Google Scholar 

  26. D. O. Sergeev, Yu. A. Ukhova, Yu. V. Stanilovskaya, and V. E. Romanovskii, “Temperature regime of permafrost massifs and seasonally thawing layer in the mountains of northern Transbaikal region: restoration of stationary observations,” Kriosfera Zemli 11 (2), 19–26 (2007).

    Google Scholar 

  27. Yu. B. Skachkov, Candidate’s Dissertation in Geology (Yakutsk, 2001).

  28. Yu. B. Skachkov, “Modern air temperature dynamics in the Sakha (Yakutia) Republic” in Geography of Yakutia, No. 9: Landscapes of Cryogenic Regions (Melnikov Permafrost Institute, Siberian Branch, Russian Academy of Sciences, Yakutsk, 2005), pp. 27–31.

  29. A. N. Fedorov and P. Ya. Konstantinov, “Response of permafrost landscapes of Central Yakutia to current climate changes and anthropogenic impacts,” Geogr. Nat. Res. 30, 146–150 (2009).

    Article  Google Scholar 

  30. S. M. Chudinova, S. S. Bykhovets, M. R. Sorokovikov, R. Barri, E. Zhang, and D. A. Gilichinskii, “Specific temperature dynamics of Russian soils during the latest climate warming,” Kriosfera Zemli 7 (3), 23–30 (2003).

    Google Scholar 

  31. D. I. Shashko, Climatic Conditions of Farming in Central Yakutia (Moscow, 1961) [in Russian].

    Google Scholar 

  32. D. I. Shashko, Agroclimatic Resources of the USSR (Gidrometeoizdat, Leningrad, 1985) [in Russian].

    Google Scholar 

  33. Yu. L. Shur, Upper Horizon of Permafrost and Thermokarst (Nauka, Novosibirsk, 1988) [in Russian].

    Google Scholar 

  34. E. A. Davidson and I. A. Janssens, “Temperature sensitivity of soil carbon decomposition and feedbacks to climate change,” Nature 440, 165–173 (2006).

    Article  Google Scholar 

  35. S. P. Davydov, D. G. Fyodorov-Davydov, J. C. Neff, et al., “Changes in active layer thickness and seasonal fluxes of dissolved organic carbon as a possible baseline for permafrost monitoring,” in Proceedings of the Ninth International Conf. on Permafrost (University of Alaska, Fairbanks, 2008), Vol. 1, pp. 333–336.

  36. R. Desyatkin, A. Fedorov, A. Desyatkin, and P. Konstantinov, “Air temperature changes and their impact on permafrost ecosystems in eastern Siberia,” Therm. Sci. 19 (2), S351–S360 (2015). https://doi.org/10.2298/TSCI150320102D

    Article  Google Scholar 

  37. R. V. Desyatkin and A. R. Desyatkin, “Temperature regime of solonetzic meadow-chernozemic permafrost-affected soil in a long-term cycle,” Eurasian Soil Sci. 50, 1344–1354 (2017). https://doi.org/10.1134/S1064229317090022

    Article  Google Scholar 

  38. A. N. Fedorov, P. P. Gavriliev, P. Y. Konstantinov, T. Hiyama, Y. Iijima, and G. Iwahana, “Estimating the water balance of a thermokarst lake in the middle of the Lena River basin, eastern Siberia,” Ecohydrology 7 (2), 188–196 (2014).

    Article  Google Scholar 

  39. D. G. Fyodorov-Davydov, A. L. Kholodov, V. E. Ostroumov, et al., “Seasonal thaw of soils in the North Yakutian ecosystems,” in Proceedings of the Ninth International Conf. on Permafrost (University of Alaska, Fairbanks, 2008), Vol. 1, pp. 481–486.

  40. Y. Iijima, A. N. Fedorov, H. Park, K. Suzuki, H. Yabuki, T. C. Maximov, and T. Ohata, “Abrupt increases in soil temperatures following increased precipitation in a permafrost region, central Lena River basin, Russia,” Permafrost Periglacial Process. 21 (1), 30–41 (2010).

    Article  Google Scholar 

  41. IPCC, “Summary for policymakers,” in Climate Change 2014: Mitigation of Climate Change, Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Ed. by O. Edenhofer and R. Pichs-Madruga (Cambridge University Press, Cambridge, 2014).

    Google Scholar 

  42. H. Park, A. Fedorov, M. Zheleznyak, P. Konstantinov, and J. E. Walsh, “Effect of snow cover on pan-Arctic permafrost thermal regimes,” Clim. Dyn., (2014). https://doi.org/10.1007/s00382-014-2356-5

    Article  Google Scholar 

  43. H. Park, A. Sherstiukov, A. Fedorov, I. Polyakov, and J. E. Walsh, “An observation-based assessment of the influences of air temperature and snow depth on soil temperature in Russia,” Environ. Res. Lett. 9 (6), (2014). https://doi.org/10.1088/17489326/9/6/064026

  44. E. A. Zakharova, A. V. Kouraev, G. Stephane, G. Franck, R. Desyatkin, and A. R. Desyatkin, “Recent dynamics of hydro-ecosystems in thermokarst depressions in Central Siberia from satellite and in situ observations: Importance for agriculture and human life,” Sci. Total Environ. 615, 1290–1304 (2017). https://doi.org/10.1016/j.scitotenv.2017.09.059

    Article  Google Scholar 

Download references

Funding

This study was performed within the framework of the state assignment of the Institute for Biological Problems of Cryolithozone of the Siberian Branch of the Russian Academy of Sciences, project V.54.1.2. “Identification of cause-and-effect basics of the dynamics of soils, vegetation, and animal life in the area of coarse-textured parent materials in the permafrost zone of Central Yakutia for the development of fundamental bases of environmental conservation practices in the permafrost zone under conditions of increasing anthropogenic loads and global changes” (no. 03762019-0006; state registration no. AAAA-A19-119040990002-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. V. Desyatkin.

Additional information

Translated by D. Konyushkov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Desyatkin, R.V., Desyatkin, A.R. The Effect of Increasing Active Layer Depth on Changes in the Water Budget in the Cryolithozone. Eurasian Soil Sc. 52, 1447–1455 (2019). https://doi.org/10.1134/S1064229319110036

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229319110036

Keywords:

Navigation