Skip to main content

Effect of Altitude on Forest Soil Properties at Northern Karakoram

Abstract—

This study aims to determine variation in soil physical, chemical and microbial properties along altitudinal gradients in fragile mountains region of the Karakoram. The soil samples were collected at the altitude ranging from 2787 to 3600 m from the alpine forest of the Bagrot valley, northern Karakoram, Pakistan and analyzed for various physical, chemical, and microbial parameters. The results indicate that there is a strong relationship of the soil parameters with altitude (p ≤ 0.01). With increasing elevation, soil bulk density, sand content, electrical conductivity (EC), pH, CaCO3 content, and 16S rRNA decreased significantly, while total porosity, saturation percentage, soil organic matter (SOM) contents, soil nutrients, and fungi-to-bacteria ratio increased with increasing altitude. These findings increase the understanding of dynamics of soil properties and enhance predictions of the responses of alpine soils to global warming.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. E. Ehlers, “Interaction of society and environment in economically and ecologically marginal lands,” in Understanding Land-Use and Land-cover Change in Global and Regional Context, Ed. by E. Milanova and Y. Himiyama (CRC Press, Boca Raton, 2005), pp. 23–29.

    Google Scholar 

  2. A. Hebel, “Soil degradation—diagnosis, appraisal and reversing measures. Introduction,” in Towards Sustainable Land Use, Ed. by H. P. Blume, et al. (Catena Verlag, Reiskirchen, 1998), Vol. 1, pp. 1–2.

  3. R. Lal, Soil Erosion in the Tropics: Principles and Management (McGraw-Hill, New York, 1990).

    Google Scholar 

  4. S. Ali, F. Begum, R. Hayat, and B. J. Bohannan, “Variation in soil organic carbon stock in different land uses and altitudes in Bagrot Valley, Northern Karakoram,” Acta Agric. Scand. B 67 (6), 551–561 (2017). https://doi.org/10.1080/09064710.2017.1317829

    Article  Google Scholar 

  5. C. Parmesan, “Ecological and evolutionary responses to recent climate change,” Annu. Rev. Ecol. Evol. Syst. 37, 637–669 (2006). https://doi.org/10.1146/annurev.ecolsys.37.091305.110100

    Article  Google Scholar 

  6. H.-L. Pan, X.-L. Liu, X.-H. Cai, Z. Du, F.-Z. He, L. Wang, and M.-H. Li, “Growth and morphological responses of Fargesia angustissima to altitude in the Wolong Nature Reserve, southwestern China,” Acta Ecol. Sin. 29 (2), 144–149 (2009). https://doi.org/10.1016/j.chnaes.2009.06.001

    Article  Google Scholar 

  7. E. V. J. Tanner, P. M. Vitousek, and E. Cuevas, “Experimental investigation of nutrient limitation of forest growth on wet tropical mountains,” Ecology 79, 10–22 (1998).

    Article  Google Scholar 

  8. J. Proctor, I. D. Edwards, R. W. Payton, and L. Nagy, “Zonation of forest vegetation and soils of Mount Cameroon, West Africa,” Plant Ecol. 192 (2), 251–269 (2007).

    Article  Google Scholar 

  9. B. Du, H. Kang, J. Pumpanen, P. Zhu, S. Yin, Q. Zou, and C. Liu, “Soil organic carbon stock and chemical composition along an altitude gradient in the Lushan Mountain, subtropical China,” Ecol. Res. 29 (3), 433–439 (2014).

    Article  Google Scholar 

  10. C. Zhang, G. Liu, S. Xue, and C. Sun, “Soil organic carbon and total nitrogen storage as affected by land use in a small watershed of the Loess Plateau, China,” Eur. J. Soil Biol. 54, 16–24 (2013). https://doi.org/10.1016/j.ejsobi.2012.10.007

    Article  Google Scholar 

  11. U. Schickhoff, “The Kaghan Valley in the Western Himalayas (Pakistan). Studies on geo-ecological differentiation and landscape change, with an appendix on the vegetation,” Bonner Geogr. Abh. 87, 268 (1993)

    Google Scholar 

  12. N.S. Jodha, “Mountain perspective and sustainability, a framework for development,” in Sustainable Mountain Agriculture: Perspectives and Issues, Ed. by N. S. Jodha, M. Banskota, and T. Partap (International Centre for Integrated Mountain Development, Oxford, 1992), pp. 41–82.

    Book  Google Scholar 

  13. S. E. Williams, E. E. Bolitho, and S. Fox, “Climate change in Australian tropical rainforests: an impending environmental catastrophe,” Proc. R. Soc. London, Ser. B 270 (1527), 41–82 (2003). https://doi.org/10.1098/rspb.2003.2464

    Article  Google Scholar 

  14. R. P. Griffiths, M. D. Madritch, and A. K. Swanson, “Implication for the effects of climate change on soil properties,” For. Ecol. Manage. 257, 1–7 (2009) https://doi.org/10.1016/j.foreco.2008.08.010

    Article  Google Scholar 

  15. S. Saeed, M. Y. K. Baroza, A. Ahmad, and S. H. Shah, “Impact of altitude on soil physical and chemical properties in Sra Ghurgai (Takatu mountain range) Quetta, Balochistan,” Int. J. Sci. Engin. Res. 5 (3), 730–735 (2014).

    Google Scholar 

  16. C. Körner, “A re-assessment of high elevation treeline positions and their explanation,” Oecologia 115 (4), 445–459 (1998). https://doi.org/10.1007/s004420050540

    Article  Google Scholar 

  17. M. P. Searle, Geology and Tectonics of the Karakoram Mountains (Wiley, New York, 1991).

    Google Scholar 

  18. M. G. Petterson, B. F. Windley, and I. W. Luff, “The Chalt Volcanics, Kohistan, N. Pakistan; high-Mg tholeiitic and low-Mg calc-alkaline volcanism in a Cretaceous island arc,” Phys. Chem. Earth 17, 19–30 (1990).

    Google Scholar 

  19. S. Miehe, T. Cramer, J. P. Jacobsen, and M. Winiger, “Humidity conditions in the Western Karakorum as indicated by climatic data and corresponding distribution patterns of the montane and alpine vegetation,” Geography 50, 190–204 (1996)

    Google Scholar 

  20. T. Cramer, “Topo-climatic studies of Bagrot Valley-Karakoram, Pakistan,” GEO Curr. 3, 231 (2000).

    Google Scholar 

  21. G. R. Blake and K. H. Hartge, “Bulk density,” in Methods of Soil Analysis, Part 1: Physical and Mineralogical Methods, Ed. by A. Klute, SSSA Book Series no. 5 (American Society of Agronomy, Soil Science Society of America, Madison, WI, 1986), pp. 363–375.

  22. R. E. Danielsen and P. L. Sutherland, “Soil porosity,” in Methods of Soil Analysis, Part 1: Physical and Mineralogical Methods, Ed. by A. Klute (American Society of Agronomy, Soil Science Society of America, Madison, WI, 1986), Vol. 1, pp. 443–461.

  23. M. S. Malik, M. K. Abbasi, and N. Rahim, “Laboratory study of physical-chemical characteristics and the nutrient status of soils collected from Rawalakot Azad Jammu and Kashmir,” Pak. J. Biol. Sci. 3, 2082–2086 (2000)

    Article  Google Scholar 

  24. A. Klute, “Water retention, laboratory methods,” in Methods of Soil Analysis, Part 1: Physical and Mineralogical Methods, Ed. by A. Klute (American Society of Agronomy, Soil Science Society of America, Madison, WI, 1986), pp. 635–662.

    Google Scholar 

  25. D. L. Rowell, “The preparation of saturation extracts and the analysis of soil salinity and sodicity,” in Soil Science Methods and Applications (Longman Group, Harlow, 1994).

    Google Scholar 

  26. J. D. Rhoades, “Soluble salts,” in Methods of Soil Analysis, Part 2: Chemical and Microbiological Properties, Ed. by A. L. Page, R. H. Miller, and D. R. Keeney, ASA-SSSA Agronomy Monograph no. 9 (American Society of Agronomy, Soil Science Society of America, Madison, WI, 1982), pp. 167–178.

  27. L. A. Richards, “Diagnosis and improving of saline and alkaline soils,” in US Salinity Laboratory Staff Agricultural Handbook (Government Printing Office, Washington, DC, 1954), Vol. 60.

    Google Scholar 

  28. D. W. Nelson and L. E. Sommers, “Total carbon, organic carbon, and organic matter,” in Methods of Soil Analysis, Part 2: Chemical and Microbiological Properties, Ed. by A. L. Page, R. H. Miller, and D. R. Keeney (American Society of Agronomy, Soil Science Society of America, Madison, WI, 1982), pp. 539–594.

  29. J. M. Bremner and C. S. Mulvaney, “Nitrogen-total,” in Methods of Soil Analysis, Part 2: Chemical and Microbiological Properties, Ed. by A. L. Page, R. H. Miller, and D. R. Keeney (American Society of Agronomy, Soil Science Society of America, Madison, WI, 1982), pp. 595–624.

  30. P. N. Soltanpour, “Use of ammonium bicarbonate DTPA soil test to evaluate elemental availability and toxicity,” Commun. Soil Sci. Plant Anal. 16, 323–338 (1985).

    Article  Google Scholar 

  31. S. R. Olson, C. V. Cole, F. S. Watanable, and L. A. Dean, “Estimation of available phosphorus in soil by extraction with sodium bicarbonate,” USDA Circ. 939, 1–19 (1954).

    Google Scholar 

  32. J. G. Caporaso, “Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample,” Proc. Natl. Acad. Sci. U.S.A. 108, 4516–4522 (2011).

    Article  Google Scholar 

  33. N. Fierer, J. A. Jackson, R. Vilgalys, and R. B. Jackson, “Assessment of soil microbial community structure by use of taxon-specific quantitative PCR assays,” Appl. Environ. Microbiol. 71, 4117–4120 (2005). https://doi.org/10.1128/AEM.71.7.4117-4120.2005

    Article  Google Scholar 

  34. G. Einstein and K. Abernethy, Statistical Package for the Social Sciences (SPSS), Version 12.0 (Furman University, Greenville, 2000)

    Google Scholar 

  35. G. Gerold, M. Schawe, and K. Bach, “Hydrometeorologic, pedologic and vegetation patterns along an elevational transect in the montane forest of the Bolivian Yungas,” Die Erde 139, 141–168 (2008).

    Google Scholar 

  36. M. K. Abbasi, M. Zafar, and T. Sultan, “Changes in soil properties and microbial indices under different land cover types in the mountain region of Rawalakot Azad Jammu and Kashmir,” Commun. Soil Sci. Plant Anal. 41, 768–782 (2010)

    Article  Google Scholar 

  37. E. C. Brevik, “Soil health and productivity,” in Soils, Plant Growth and Crop Production, Ed. by W. Verheye (EOLSS, Oxford, 2010), Vol. 2.

    Google Scholar 

  38. A. I. Iwara, PhD Thesis (University of Ibadan, Ibadan, 2011).

  39. M. Lemenih and F. Itanna, “Soil carbon stocks and turnovers in various vegetation type and arable lands along an elevation gradient in southern Ethiopia,” Geoderma 123, 177–188 (2004).

    Article  Google Scholar 

  40. G. Charan, V. K. Bharti, S. E. Jadhav, S. Kumar, D. Angchok, S. Acharya, P. Kumar, and R. B. Srivastava, “Altitudinal variations in carbon storage and distribution patterns in cold desert high altitude region of India,” Afr. J. Agric. Res. 7, 6313–6319 (2012)

    Article  Google Scholar 

  41. X. Bu, H. Ruan, L. Wang, W. Ma, J. Ding, and X. Yu, “Soil organic matter in density fractions as related to vegetation changes along an altitude gradient in the Wuyi Mountains, southeastern China,” Appl. Soil Ecol. 52, 42–47 (2012).

    Article  Google Scholar 

  42. L. Liu, G. Shen, F. Chen, L. Luo, Z. Xie, and J. Yu, “Dynamic characteristics of litterfall and nutrient return of four typical forests along the altitudinal gradients in Mt. Shennongjia, China,” Acta Ecol. Sin. 32, 2142–2149 (2012).

    Article  Google Scholar 

  43. I. Djukic, F. Zehetner, M. Tatzber, and M. H. Gerzabek, ‘Soil organic-matter stocks and characteristics along an Alpine elevation gradient,” J. Plant Nutr. Soil Sci. 173, 30–38 (2010)

    Article  Google Scholar 

  44. A. Bot and J. Benites, The Importance of Soil Organic Matter Key to Drought-Resistant Soil and Sustained Food and Production, FAO Soils Bulletin vol. 80 (UN Food and Agriculture Organization, Rome, 2005).

  45. S. Sarwar, S. Perveen, M. Shoaib, F. Ahmad, and J. Khan, “To study the correlation of micronutrients with physico-chemical properties of soils of district Palandri (Azad Kashmir),” Sarhad J. Agric. 23 (3), 655–665 (2007).

    Google Scholar 

  46. C. Kunze, “Geoökologische Untersuchungen in Kali Gandaki Tal,” Giessener Beitr. Entwicklungsforsch., Reihe 1 8, 187–194 (1982).

    Google Scholar 

  47. J. Rousk, P. C. Brookes, and E. Bååth, “Contrasting soil pH effects on fungal and bacterial growth suggest functional redundancy in carbon mineralization,” Appl. Environ. Microbiol., 75 (6), 1589–1596 (2009).

    Article  Google Scholar 

  48. R. G. Joergensen and F. Wichern, “Quantitative assessment of the fungal contribution to microbial tissue in soil,” Soil Biol. Biochem. 40, 2977–2991 (2008).

    Article  Google Scholar 

  49. N. Fierer, D. R. Nemergut, R. Knight, and J. M. Craine, “Changes through time integrating microorganisms into the study of succession,” Res. Microbiol. 161, 635–642 (2010).

    Article  Google Scholar 

  50. D. C. Zlesak, M. H. Meyer, C. J. Rosen, H. Dolliver, and T. Kelley, “Examining the effect of established conifer and deciduous trees on soil pH,” Hortscience 45 (8), (2010).

  51. J. L. Smith, J. J. Halvorson, and H. Bolton Jr., “Soil properties and microbial activity across a 500 m elevation gradient in a semi-arid environment,” Soil Biol. Biochem. 34, 1749–1757 (2002).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shamsher Ali.

Ethics declarations

No potential conflict of interest was reported by the authors.

Additional information

Supplementary materials are available for this at doi 10.1134/S1064229319100120 and are accessible for authorized users.

Supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shamsher Ali, Hussain, I., Hussain, S. et al. Effect of Altitude on Forest Soil Properties at Northern Karakoram. Eurasian Soil Sc. 52, 1159–1169 (2019). https://doi.org/10.1134/S1064229319100120

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229319100120

Keywords:

  • Bagrot valley
  • climate change
  • internal transcript sequence
  • soil organic matter