Abstract—
The accumulation of polycyclic aromatic hydrocarbons (PAHs) in the profiles of permafrost-affected peat mounds is related to certain groups of plant residues produced in the Atlantic climatic optimum of the Holocene. Both “heavy” (benzo[ghi]perylene, dibenz[a,h]anthracene, and benzo[b]fluoranthene) and “light” (pyrene and naphthalene) PAHs predominate in them. The polyarenes preserved in the permafrost horizons are not subjected to transformation in contrast to the polyarenes in the active layer. Dynamic freeze–thaw processes at the boundary between seasonally thawed and permanently frozen layers result in considerable transformation of plant remains, humic substances, and nonspecific organic compounds with the accumulation of 5–6-nuclear PAH structures. The composition of PAHs in peatlands and a significant increase in the weight fraction of PAHs at the boundary between seasonally thawed and permafrost layers may serve as indicators of permafrost response to climate changes in high latitudes.
This is a preview of subscription content, access via your institution.





REFERENCES
Atlas of Climate and Hydrology of the Komi Republic, Drofa, Moscow, 1997) [in Russian].
R. S. Vasilevich, D. N. Gabov, V. A. Beznosikov, I. V. Gruzdev, and E. D. Lodygin, “High-and low molecular-weight organic compounds in tundra peatbogs,” Teor. Prikl. Ekol., No. 1, 53–61 (2015).
D. N. Gabov, V. A. Beznosikov, and E. V. Yakovleva, “Accumulation of polycyclic aromatic hydrocarbons in hummocky tundra peatlands under climate change at high latitudes,” Geochem. Int. 55, 737–751 (2017). https://doi.org/10.1134/S0016702917060039
A. N. Gennadiev, Yu. I. Pikovskii, R. G. Kovach, T. S. Koshovskii, and N. I. Khlynina, “Hydrocarbon status of soils under different ages of oil contamination,” Eurasian Soil Sci. 49, 529–537 (2016). https://doi.org/10.1134/S1064229316050045
A. N. Gennadiev, Yu. I. Pikovskii, A. S. Tsibart, and M. A. Smirnova, “Hydrocarbons in soils: origin, composition, and behavior (review),” Eurasian Soil Sci. 48, 1076–1089 (2015). https://doi.org/10.1134/S1064229315100026
V. S. Enokyan, A Map of Quaternary Deposits, North Ural Series, Q-41-V, Scale 1 : 200 000 (Ministry of Geology and Resource Protection of the USSR, Moscow, 1959) [in Russian].
G. G. Mazhitova, “Soil temperature regimes in the discontinuous permafrost zone in the east European Russian Arctic,” Eurasian Soil Sci. 41, 48–62 (2008).
V. O. Targulian, Soil Memory: Soils as the Memory of the Biosphere–Geosphere–Anthroposphere Interactions, Ed. by V. O. Targulian and S. V. Goryahckin (LKI, Moscow, 2008) [in Russian].
A. V. Pastukhov, D. A. Kaverin, and D. N. Gabov, “Polycyclic aromatic hydrocarbons in cryogenic peat plateaus of northeastern Europe,” Eurasian Soil Sci. 50, 805–813 (2017). https://doi.org/10.1134/S1064229317070092
PND F 16.1:2.2:2.3:3.62-09. Quantitative Chemical Analysis of Soils. Measurement of Mass Fraction of Polycyclic Aromatic Hydrocarbons in Soils, Bottom Sediments, Sewage Sludges and Industrial Wastes by HPLC (Federal Environmental, Industrial and Nuclear Supervision Service of Russia, Moscow, 2009) [in Russian].
A. S. Tsibart, A. N. Gennadiev, T. S. Koshovskii, and N. S. Gamova, “Polycyclic aromatic hydrocarbons in pyrogenic soils of swampy landscapes of the Meshchera Lowland,” Eurasian Soil Sci. 49, 285–293 (2016). https://doi.org/10.1134/S106422931603011X
O. A. Chichagova, Radiocarbon Dating of Soil Humus: Procedure and Application in Soil Science and Paleogeography (Nauka, Moscow, 1985) [in Russian].
E. V. Yakovleva, V. A. Beznosikov, B. M. Kondratenok, and D. N. Gabov, “Bioaccumulation of polycyclic aromatic hydrocarbons in the soil–plant systems of the northern-taiga biocenoses,” Eurasian Soil Sci. 45, 309–320 (2012).
E. V. Yakovleva, D. N. Gabov, V. A. Beznosikov, and B. M. Kondratenok, “Polycyclic aromatic hydrocarbons in soils and lower-layer plants of the southern shrub tundra under technogenic conditions,” Eurasian Soil Sci. 47, 562–572 (2014). https://doi.org/10.1134/S1064229314060106
E. V. Yakovleva, D. N. Gabov, and V. A. Beznosikov, “Accumulation of polycyclic aromatic hydrocarbons by southern tundra plants in open-pit coal mining,” Vestn. Inst. Biol., Komi Nauchn. Tsentra, Ural. Otd., Ross. Akad. Nauk, No. 4, 24–33 (2016). https://doi.org/10.31140/j.vestnikib.2016.4(198).4
L. R. Belyea and N. Malmer, “Carbon sequestration in peatland: Patterns and mechanisms of response to climate change,” Global Change Biol. 10 (7), 1043–1052 (2004). https://doi.org/10.1111/j.1529-8817.2003.00783.x
J. D. Berset, P. Kuehne, and W. Shotyk, “Concentrations and distribution of some polychlorinated biphenyls (PCBs) and polycyclic aromatic hydrocarbons (PAHs) in an ombrotrophic peat bog profile of Switzerland,” Sci. Total Environ. 267 (1–3), 67–85 (2001). https://doi.org/10.1016/S0048-9697(00)00763-4
T. R. Christensen, T. Johansson, H. J. Åkerman, M. Mastepanov, N. Malmer, T. Friborg, P. Crill, and B. H. Svensson, “Thawing sub-arctic permafrost: effects on vegetation and methane emissions,” Geophys. Res. Lett. 31 (4), 1–4 (2004). https://doi.org/10.1029/2003GL018680
R. T. Conant, M. G. Ryan, G. I. Ågren, H. E. Birge, E. A. Davidson, P. E. Eliasson, S. E. Evans, S. D. Frey, C. P. Giardina, F. M. Hopkins, R. Hyvönen, M. U. F. Kirschbaum, J. M. Lavallee, J. Leifeld, W. J. Parton, et al., “Temperature and soil organic matter decomposition rates—synthesis of current knowledge and a way forward,” Global Change Biol. 17, 3392–3404 (2011). https://doi.org/10.1111/j.1365-2486.2011.02496.x
C. Gao, K.-H. Knorr, Z. Yu, J. He, S. Zhang, X. Lu, and G. Wang, “Black carbon deposition and storage in peat soils of the Changbai Mountain, China,” Geoderma 273, 98–105 (2016). https://doi.org/10.1016/j.geoderma.2016.03.021
K. Grice, B. Nabbefeld, and E. Maslen, “Source and significance of selected polycyclic aromatic hydrocarbons in sediments (Hovea-3 well, Perth Basin, Western Australia) spanning the Permian–Triassic boundary,” Org. Geochem. 38 (11), 1795–1803 (2007). https://doi.org/10.1016/j.orggeochem.2007.07.001
P. Ya. Groisman, R. W. Knight, D. R. Easterling, T. R. Karl, G. C. Hegerl, and V. N. Razuvaev, “Trends in intense precipitation in the climate record,” J. Clim. 18 (9), 1326–1350 (2005). https://doi.org/10.1175/JCLI3339.1
G. Grosse, J. Harden, M. Turetsky, A. D. McGuire, P. Camill, C. Tarnocai, S. Frolking, E. A. G. Schuur, T. Jorgenson, S. Marchenko, V. Romanovsky, K. P. Wickland, N. French, M. Waldrop, L. Bourgeau-Chavez, et al., “Vulnerability of high-latitude soil organic carbon in North America to disturbance,” J. Geophys. Res.: Biogeosci. 116 (G00K06), 1–23 (2011). https://doi.org/10.1029/2010JG001507
L. D. Hinzman, N. D. Bettez, W. R. Bolton, F. S. Chapin, M. B. Dyurgerov, C. L. Fastie, B. Griffith, R. D. Hollister, A. F. Hope, H. P. Huntington, A. M. Jensen, G. J. Jia, T. Jorgenson, D. L. Kane, D. R. Klein, et al., “Evidence and implications of recent climate change in Northern Alaska and other Arctic regions,” Clim. Change 72, 251–298 (2005). https://doi.org/10.2307/2641104
M. M. Holland and C. M. Bitz, “Polar amplification of climate change in coupled models,” Clim. Dyn. 21, 221–232 (2003). https://doi.org/10.1007/s00382-003-0332-6
E. G. Jobbagy and R. B. Jackson, “The vertical distribution of soil organic carbon and its relation to climate and vegetation,” Ecol. Appl. 10 (2), 423–436 (2000). https://doi.org/10.2307/2641104
D. L. Johnson, K. L. Maguire, D. R. Anderson, and S. P. McGrath, “Enhanced dissipation of chrysene in planted soil: the impact of rhizobial inoculums,” Soil Biol. Biochem. 36, 33–38 (2004). https://doi.org/10.1016/j.soilbio.2003.07.004
K. C. Jones, J. A. Stratford, K. S. Waterhouse, and N. B. Vogt, “Organic contaminants in Welsh soils: polynuclear aromatic hydrocarbons,” Environ. Sci. Technol. 23, 540–550 (1989). https://doi.org/10.1021/es00063a005
M. T. Jorgenson, C. H. Racine, J. C. Walters, and T. E. Osterkamp, “Permafrost degradation and ecological changes associated with a warming climate in central Alaska,” Clim. Change 48, 551–579 (2001). https://doi.org/10.1023/A:1005667424292
E. Leorri, S. Mitra, M. J. Irabien, A. R. Zimmerman, W. H. Blake, and A. Cearreta, “A 700 year record of combustion-derived pollution in northern Spain: tools to identify the Holocene/Anthropocene transition in coastal environments,” Sci. Total Environ. 470–471, 240–247 (2014). https://doi.org/10.1016/j.scitotenv.2013.09.064
M. Malawska and A. Ekonomiuk, “The use of wetlands for the monitoring of non-point source air pollution,” Pol. J. Environ. Stud. 17 (1), 57–70 (2008).
H. Middelkoop, K. Daamen, D. Gellens, W. Grabs, J. C. J. Kwadijk, H. Lang, B. W. A. H. Parmet, B. Schädler, J. Schulla, and K. Wilke, “Impact of climate change on hydrological regimes and water resources management in the Rhine basin,” Clim. Change 49 (1–2), 105–128 (2001). https://doi.org/10.1023/A:1010784727448
I. H. Myers-Smith, B. C. Forbes, M. Wilmking, M. Hallinger, T. Lantz, D. Blok, K. D. Tape, M. MacIas-Fauria, U. Sass-Klaassen, E. Lévesque, S. Boudreau, P. Ropars, L. Hermanutz, A. Trant, L. S. Collier, et al., “Shrub expansion in tundra ecosystems: dynamics, impacts and research priorities,” Environ. Res. Lett. 6 (4), 045509 (2011). https://doi.org/10.1088/1748-9326/6/4/045509
J. E. Ortiz, T. Torres, A. Delgado, R. Julià, M. Lucini, F. J. Llamas, E. Reyes, V. Soler, and M. Valle, “The palaeoenvironmental and palaeohydrological evolution of Padul peat bog (Granada, Spain) over one million years, from elemental, isotopic and molecular organic geochemical proxies,” Org. Geochem. 35, 1243–1260 (2004). https://doi.org/10.1016/j.orggeochem.2004.05.013
R. D. Pancost, M. Baas, B. van Geel, and J. S. Sinninghe Damste, “Biomarkers as proxies for plant inputs to peats: an example from a sub-boreal ombrotrophic bog,” Org. Geochem. 33 (7), 675–690 (2002). https://doi.org/10.1016/S0146-6380(02)00048-7
N. Pelletier, J. Talbot, D. Olefeldt, M. Turetsky, C. Blodau, O. Sonnentag, and W. L. Quinton, “Influence of Holocene permafrost aggradation and thaw on the paleoecology and carbon storage of a peatland complex in northwestern Canada,” Holocene 27 (9), 1391–1405 (2017). doi 10.1177%2F0959683617693899
X. Pontevedra-Pombal, L. Rey-Salgueiro, M. S. García-Falcón, E. Martínez-Carballo, J. Simal-Gándara, and A. Martínez-Cortizas, “Pre-industrial accumulation of anthropogenic polycyclic aromatic hydrocarbons found in a blanket bog of the Iberian Peninsula,” Environ. Res. 116, 36–43 (2012). https://doi.org/10.1016/j.envres.2012.04.015
G. Sanders, K. C. Jones, J. Hamilton-Taylor, and H. Dorr, “PCB and PAH fluxes to a dated UK peat core,” Environ. Pollut. 89 (1), 17–25 (1995).
E. A. G. Schuur, J. Bockheim, J. G. Canadell, E. Euskirchen, C. B. Field, S. V. Goryachkin, S. Hagemann, P. Kuhry, P. M. Lafleur, H. Lee, G. Mazhitova, F. E. Nelson, A. Rinke, V. E. Romanovsky, N. Shiklomanov, et al., “Vulnerability of permafrost carbon to climate change: Implications for the global carbon cycle,” BioScience 58 (8), 701–714 (2008). https://doi.org/10.1641/B580807
M. C. Serreze, A. P. Barrett, J. C. Stroeve, D. N. Kindig, and M. M. Holland, “The emergence of surface-based Arctic amplification,” Cryosphere 3 (1), 11–19 (2009). https://doi.org/10.5194/tc-3-11-2009
C. Tarnocai, J. Canadell, E. Schuur, P. Kuhry, G. Mazhitova, and S. Zimov, “Soil organic carbon pools in the northern circumpolar permafrost region,” Global Biogeochem. Cycles 23 (2), 1–11 (2009). https://doi.org/10.1029/2008GB003327
M. R. Turetsky, S. W. Manning, and R. K. Wieder, “Dating recent peat deposits,” Wetlands 24 (2), 324–356 (2004). https://doi.org/10.1672/0277-5212(2004)024[0324:DRPD]2.0.CO;2
D. G. Vaughan, G. J. Marshall, W. M. Connolley, C. Parkinson, R. Mulvaney, D. A. Hodgson, J. C. King, C. J. Pudsey, and J. Turner, “Recent rapid regional climate warming on the Antarctic Peninsula,” Clim. Change 60 (3), 243–274 (2003). https://doi.org/10.1023/A:1026021217991
S. Yamamoto, K. Kawamura, O. Seki, P. A. Meyers, Y. Zheng, and W. Zhou, “Environmental influences over the last 16 ka on compound-specific δ13C variations of leaf wax n-alkanes in the Hani peat deposit from northeast China,” Chem. Geol. 277, 261–268 (2010). https://doi.org/10.1016/j.chemgeo.2010.08.009
M. B. Yunker, R. W. Macdonald, L. R. Snowdon, and B. R. Fowler, “Alkane and PAH biomarkers as tracers of terrigenous organic carbon in Arctic Ocean sediments,” Org. Geochem. 42 (9), 1109–1146 (2011). https://doi.org/10.1016/j.orggeochem.2011.06.007
M. Zech, A. Andreev, R. Zech, S. Muller, U. Hambach, M. Frechen, and W. Zech, “Quaternary vegetation changes derived from a loess-like permafrost palaeosol sequence in northeast Siberia using alkane biomarker and pollen analyses,” Boreas 39 (3), 540–550 (2010). https://doi.org/10.1111/j.1502-3885.2009.00132.x
Funding
This study was supported by the Russian Foundation for Basic Research, project no. 18-05-60195 (CITSEA no. AAAAA-A18-118062090029-0) and by the taxpayer-funded research project no. AAAA-A17-117122290011-5.
Author information
Authors and Affiliations
Corresponding author
Additional information
Translated by D. Konyushkov
Rights and permissions
About this article
Cite this article
Gabov, D.N., Yakovleva, Y.V., Vasilevich, R.S. et al. Polycyclic Aromatic Hydrocarbons in Peat Mounds of the Permafrost Zone. Eurasian Soil Sc. 52, 1038–1050 (2019). https://doi.org/10.1134/S1064229319090035
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S1064229319090035