Skip to main content

Polycyclic Aromatic Hydrocarbons in Peat Mounds of the Permafrost Zone

Abstract—

The accumulation of polycyclic aromatic hydrocarbons (PAHs) in the profiles of permafrost-affected peat mounds is related to certain groups of plant residues produced in the Atlantic climatic optimum of the Holocene. Both “heavy” (benzo[ghi]perylene, dibenz[a,h]anthracene, and benzo[b]fluoranthene) and “light” (pyrene and naphthalene) PAHs predominate in them. The polyarenes preserved in the permafrost horizons are not subjected to transformation in contrast to the polyarenes in the active layer. Dynamic freeze–thaw processes at the boundary between seasonally thawed and permanently frozen layers result in considerable transformation of plant remains, humic substances, and nonspecific organic compounds with the accumulation of 5–6-nuclear PAH structures. The composition of PAHs in peatlands and a significant increase in the weight fraction of PAHs at the boundary between seasonally thawed and permafrost layers may serve as indicators of permafrost response to climate changes in high latitudes.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. Atlas of Climate and Hydrology of the Komi Republic, Drofa, Moscow, 1997) [in Russian].

  2. R. S. Vasilevich, D. N. Gabov, V. A. Beznosikov, I. V. Gruzdev, and E. D. Lodygin, “High-and low molecular-weight organic compounds in tundra peatbogs,” Teor. Prikl. Ekol., No. 1, 53–61 (2015).

  3. D. N. Gabov, V. A. Beznosikov, and E. V. Yakovleva, “Accumulation of polycyclic aromatic hydrocarbons in hummocky tundra peatlands under climate change at high latitudes,” Geochem. Int. 55, 737–751 (2017). https://doi.org/10.1134/S0016702917060039

    Article  Google Scholar 

  4. A. N. Gennadiev, Yu. I. Pikovskii, R. G. Kovach, T. S. Koshovskii, and N. I. Khlynina, “Hydrocarbon status of soils under different ages of oil contamination,” Eurasian Soil Sci. 49, 529–537 (2016). https://doi.org/10.1134/S1064229316050045

    Article  Google Scholar 

  5. A. N. Gennadiev, Yu. I. Pikovskii, A. S. Tsibart, and M. A. Smirnova, “Hydrocarbons in soils: origin, composition, and behavior (review),” Eurasian Soil Sci. 48, 1076–1089 (2015). https://doi.org/10.1134/S1064229315100026

    Article  Google Scholar 

  6. V. S. Enokyan, A Map of Quaternary Deposits, North Ural Series, Q-41-V, Scale 1 : 200 000 (Ministry of Geology and Resource Protection of the USSR, Moscow, 1959) [in Russian].

  7. G. G. Mazhitova, “Soil temperature regimes in the discontinuous permafrost zone in the east European Russian Arctic,” Eurasian Soil Sci. 41, 48–62 (2008).

    Article  Google Scholar 

  8. V. O. Targulian, Soil Memory: Soils as the Memory of the Biosphere–Geosphere–Anthroposphere Interactions, Ed. by V. O. Targulian and S. V. Goryahckin (LKI, Moscow, 2008) [in Russian].

    Google Scholar 

  9. A. V. Pastukhov, D. A. Kaverin, and D. N. Gabov, “Polycyclic aromatic hydrocarbons in cryogenic peat plateaus of northeastern Europe,” Eurasian Soil Sci. 50, 805–813 (2017). https://doi.org/10.1134/S1064229317070092

    Article  Google Scholar 

  10. PND F 16.1:2.2:2.3:3.62-09. Quantitative Chemical Analysis of Soils. Measurement of Mass Fraction of Polycyclic Aromatic Hydrocarbons in Soils, Bottom Sediments, Sewage Sludges and Industrial Wastes by HPLC (Federal Environmental, Industrial and Nuclear Supervision Service of Russia, Moscow, 2009) [in Russian].

  11. A. S. Tsibart, A. N. Gennadiev, T. S. Koshovskii, and N. S. Gamova, “Polycyclic aromatic hydrocarbons in pyrogenic soils of swampy landscapes of the Meshchera Lowland,” Eurasian Soil Sci. 49, 285–293 (2016). https://doi.org/10.1134/S106422931603011X

    Article  Google Scholar 

  12. O. A. Chichagova, Radiocarbon Dating of Soil Humus: Procedure and Application in Soil Science and Paleogeography (Nauka, Moscow, 1985) [in Russian].

    Google Scholar 

  13. E. V. Yakovleva, V. A. Beznosikov, B. M. Kondratenok, and D. N. Gabov, “Bioaccumulation of polycyclic aromatic hydrocarbons in the soil–plant systems of the northern-taiga biocenoses,” Eurasian Soil Sci. 45, 309–320 (2012).

    Article  Google Scholar 

  14. E. V. Yakovleva, D. N. Gabov, V. A. Beznosikov, and B. M. Kondratenok, “Polycyclic aromatic hydrocarbons in soils and lower-layer plants of the southern shrub tundra under technogenic conditions,” Eurasian Soil Sci. 47, 562–572 (2014). https://doi.org/10.1134/S1064229314060106

    Article  Google Scholar 

  15. E. V. Yakovleva, D. N. Gabov, and V. A. Beznosikov, “Accumulation of polycyclic aromatic hydrocarbons by southern tundra plants in open-pit coal mining,” Vestn. Inst. Biol., Komi Nauchn. Tsentra, Ural. Otd., Ross. Akad. Nauk, No. 4, 24–33 (2016). https://doi.org/10.31140/j.vestnikib.2016.4(198).4

    Article  Google Scholar 

  16. L. R. Belyea and N. Malmer, “Carbon sequestration in peatland: Patterns and mechanisms of response to climate change,” Global Change Biol. 10 (7), 1043–1052 (2004). https://doi.org/10.1111/j.1529-8817.2003.00783.x

    Article  Google Scholar 

  17. J. D. Berset, P. Kuehne, and W. Shotyk, “Concentrations and distribution of some polychlorinated biphenyls (PCBs) and polycyclic aromatic hydrocarbons (PAHs) in an ombrotrophic peat bog profile of Switzerland,” Sci. Total Environ. 267 (1–3), 67–85 (2001). https://doi.org/10.1016/S0048-9697(00)00763-4

    Article  Google Scholar 

  18. T. R. Christensen, T. Johansson, H. J. Åkerman, M. Mastepanov, N. Malmer, T. Friborg, P. Crill, and B. H. Svensson, “Thawing sub-arctic permafrost: effects on vegetation and methane emissions,” Geophys. Res. Lett. 31 (4), 1–4 (2004). https://doi.org/10.1029/2003GL018680

    Article  Google Scholar 

  19. R. T. Conant, M. G. Ryan, G. I. Ågren, H. E. Birge, E. A. Davidson, P. E. Eliasson, S. E. Evans, S. D. Frey, C. P. Giardina, F. M. Hopkins, R. Hyvönen, M. U. F. Kirschbaum, J. M. Lavallee, J. Leifeld, W. J. Parton, et al., “Temperature and soil organic matter decomposition rates—synthesis of current knowledge and a way forward,” Global Change Biol. 17, 3392–3404 (2011). https://doi.org/10.1111/j.1365-2486.2011.02496.x

    Article  Google Scholar 

  20. C. Gao, K.-H. Knorr, Z. Yu, J. He, S. Zhang, X. Lu, and G. Wang, “Black carbon deposition and storage in peat soils of the Changbai Mountain, China,” Geoderma 273, 98–105 (2016). https://doi.org/10.1016/j.geoderma.2016.03.021

    Article  Google Scholar 

  21. K. Grice, B. Nabbefeld, and E. Maslen, “Source and significance of selected polycyclic aromatic hydrocarbons in sediments (Hovea-3 well, Perth Basin, Western Australia) spanning the Permian–Triassic boundary,” Org. Geochem. 38 (11), 1795–1803 (2007). https://doi.org/10.1016/j.orggeochem.2007.07.001

    Article  Google Scholar 

  22. P. Ya. Groisman, R. W. Knight, D. R. Easterling, T. R. Karl, G. C. Hegerl, and V. N. Razuvaev, “Trends in intense precipitation in the climate record,” J. Clim. 18 (9), 1326–1350 (2005). https://doi.org/10.1175/JCLI3339.1

    Article  Google Scholar 

  23. G. Grosse, J. Harden, M. Turetsky, A. D. McGuire, P. Camill, C. Tarnocai, S. Frolking, E. A. G. Schuur, T. Jorgenson, S. Marchenko, V. Romanovsky, K. P. Wickland, N. French, M. Waldrop, L. Bourgeau-Chavez, et al., “Vulnerability of high-latitude soil organic carbon in North America to disturbance,” J. Geophys. Res.: Biogeosci. 116 (G00K06), 1–23 (2011). https://doi.org/10.1029/2010JG001507

  24. L. D. Hinzman, N. D. Bettez, W. R. Bolton, F. S. Chapin, M. B. Dyurgerov, C. L. Fastie, B. Griffith, R. D. Hollister, A. F. Hope, H. P. Huntington, A. M. Jensen, G. J. Jia, T. Jorgenson, D. L. Kane, D. R. Klein, et al., “Evidence and implications of recent climate change in Northern Alaska and other Arctic regions,” Clim. Change 72, 251–298 (2005). https://doi.org/10.2307/2641104

    Article  Google Scholar 

  25. M. M. Holland and C. M. Bitz, “Polar amplification of climate change in coupled models,” Clim. Dyn. 21, 221–232 (2003). https://doi.org/10.1007/s00382-003-0332-6

    Article  Google Scholar 

  26. E. G. Jobbagy and R. B. Jackson, “The vertical distribution of soil organic carbon and its relation to climate and vegetation,” Ecol. Appl. 10 (2), 423–436 (2000). https://doi.org/10.2307/2641104

    Article  Google Scholar 

  27. D. L. Johnson, K. L. Maguire, D. R. Anderson, and S. P. McGrath, “Enhanced dissipation of chrysene in planted soil: the impact of rhizobial inoculums,” Soil Biol. Biochem. 36, 33–38 (2004). https://doi.org/10.1016/j.soilbio.2003.07.004

    Article  Google Scholar 

  28. K. C. Jones, J. A. Stratford, K. S. Waterhouse, and N. B. Vogt, “Organic contaminants in Welsh soils: polynuclear aromatic hydrocarbons,” Environ. Sci. Technol. 23, 540–550 (1989). https://doi.org/10.1021/es00063a005

    Article  Google Scholar 

  29. M. T. Jorgenson, C. H. Racine, J. C. Walters, and T. E. Osterkamp, “Permafrost degradation and ecological changes associated with a warming climate in central Alaska,” Clim. Change 48, 551–579 (2001). https://doi.org/10.1023/A:1005667424292

    Article  Google Scholar 

  30. E. Leorri, S. Mitra, M. J. Irabien, A. R. Zimmerman, W. H. Blake, and A. Cearreta, “A 700 year record of combustion-derived pollution in northern Spain: tools to identify the Holocene/Anthropocene transition in coastal environments,” Sci. Total Environ. 470–471, 240–247 (2014). https://doi.org/10.1016/j.scitotenv.2013.09.064

    Article  Google Scholar 

  31. M. Malawska and A. Ekonomiuk, “The use of wetlands for the monitoring of non-point source air pollution,” Pol. J. Environ. Stud. 17 (1), 57–70 (2008).

    Google Scholar 

  32. H. Middelkoop, K. Daamen, D. Gellens, W. Grabs, J. C. J. Kwadijk, H. Lang, B. W. A. H. Parmet, B. Schädler, J. Schulla, and K. Wilke, “Impact of climate change on hydrological regimes and water resources management in the Rhine basin,” Clim. Change 49 (1–2), 105–128 (2001). https://doi.org/10.1023/A:1010784727448

    Article  Google Scholar 

  33. I. H. Myers-Smith, B. C. Forbes, M. Wilmking, M.  Hallinger, T. Lantz, D. Blok, K. D. Tape, M. MacIas-Fauria, U. Sass-Klaassen, E. Lévesque, S. Boudreau, P. Ropars, L. Hermanutz, A. Trant, L. S. Collier, et al., “Shrub expansion in tundra ecosystems: dynamics, impacts and research priorities,” Environ. Res. Lett. 6 (4), 045509 (2011). https://doi.org/10.1088/1748-9326/6/4/045509

    Article  Google Scholar 

  34. J. E. Ortiz, T. Torres, A. Delgado, R. Julià, M. Lucini, F. J. Llamas, E. Reyes, V. Soler, and M. Valle, “The palaeoenvironmental and palaeohydrological evolution of Padul peat bog (Granada, Spain) over one million years, from elemental, isotopic and molecular organic geochemical proxies,” Org. Geochem. 35, 1243–1260 (2004). https://doi.org/10.1016/j.orggeochem.2004.05.013

    Article  Google Scholar 

  35. R. D. Pancost, M. Baas, B. van Geel, and J. S. Sinninghe Damste, “Biomarkers as proxies for plant inputs to peats: an example from a sub-boreal ombrotrophic bog,” Org. Geochem. 33 (7), 675–690 (2002). https://doi.org/10.1016/S0146-6380(02)00048-7

    Article  Google Scholar 

  36. N. Pelletier, J. Talbot, D. Olefeldt, M. Turetsky, C. Blodau, O. Sonnentag, and W. L. Quinton, “Influence of Holocene permafrost aggradation and thaw on the paleoecology and carbon storage of a peatland complex in northwestern Canada,” Holocene 27 (9), 1391–1405 (2017). doi 10.1177%2F0959683617693899

  37. X. Pontevedra-Pombal, L. Rey-Salgueiro, M. S. García-Falcón, E. Martínez-Carballo, J. Simal-Gándara, and A. Martínez-Cortizas, “Pre-industrial accumulation of anthropogenic polycyclic aromatic hydrocarbons found in a blanket bog of the Iberian Peninsula,” Environ. Res. 116, 36–43 (2012). https://doi.org/10.1016/j.envres.2012.04.015

    Article  Google Scholar 

  38. G. Sanders, K. C. Jones, J. Hamilton-Taylor, and H. Dorr, “PCB and PAH fluxes to a dated UK peat core,” Environ. Pollut. 89 (1), 17–25 (1995).

    Article  Google Scholar 

  39. E. A. G. Schuur, J. Bockheim, J. G. Canadell, E. Euskirchen, C. B. Field, S. V. Goryachkin, S. Hagemann, P. Kuhry, P. M. Lafleur, H. Lee, G. Mazhitova, F. E. Nelson, A. Rinke, V. E. Romanovsky, N. Shiklomanov, et al., “Vulnerability of permafrost carbon to climate change: Implications for the global carbon cycle,” BioScience 58 (8), 701–714 (2008). https://doi.org/10.1641/B580807

    Article  Google Scholar 

  40. M. C. Serreze, A. P. Barrett, J. C. Stroeve, D. N. Kindig, and M. M. Holland, “The emergence of surface-based Arctic amplification,” Cryosphere 3 (1), 11–19 (2009). https://doi.org/10.5194/tc-3-11-2009

    Article  Google Scholar 

  41. C. Tarnocai, J. Canadell, E. Schuur, P. Kuhry, G. Mazhitova, and S. Zimov, “Soil organic carbon pools in the northern circumpolar permafrost region,” Global Biogeochem. Cycles 23 (2), 1–11 (2009). https://doi.org/10.1029/2008GB003327

    Article  Google Scholar 

  42. M. R. Turetsky, S. W. Manning, and R. K. Wieder, “Dating recent peat deposits,” Wetlands 24 (2), 324–356 (2004). https://doi.org/10.1672/0277-5212(2004)024[0324:DRPD]2.0.CO;2

    Article  Google Scholar 

  43. D. G. Vaughan, G. J. Marshall, W. M. Connolley, C. Parkinson, R. Mulvaney, D. A. Hodgson, J. C. King, C. J. Pudsey, and J. Turner, “Recent rapid regional climate warming on the Antarctic Peninsula,” Clim. Change 60 (3), 243–274 (2003). https://doi.org/10.1023/A:1026021217991

    Article  Google Scholar 

  44. S. Yamamoto, K. Kawamura, O. Seki, P. A. Meyers, Y. Zheng, and W. Zhou, “Environmental influences over the last 16 ka on compound-specific δ13C variations of leaf wax n-alkanes in the Hani peat deposit from northeast China,” Chem. Geol. 277, 261–268 (2010). https://doi.org/10.1016/j.chemgeo.2010.08.009

    Article  Google Scholar 

  45. M. B. Yunker, R. W. Macdonald, L. R. Snowdon, and B. R. Fowler, “Alkane and PAH biomarkers as tracers of terrigenous organic carbon in Arctic Ocean sediments,” Org. Geochem. 42 (9), 1109–1146 (2011). https://doi.org/10.1016/j.orggeochem.2011.06.007

    Article  Google Scholar 

  46. M. Zech, A. Andreev, R. Zech, S. Muller, U. Hambach, M. Frechen, and W. Zech, “Quaternary vegetation changes derived from a loess-like permafrost palaeosol sequence in northeast Siberia using alkane biomarker and pollen analyses,” Boreas 39 (3), 540–550 (2010). https://doi.org/10.1111/j.1502-3885.2009.00132.x

    Article  Google Scholar 

Download references

Funding

This study was supported by the Russian Foundation for Basic Research, project no. 18-05-60195 (CITSEA no. AAAAA-A18-118062090029-0) and by the taxpayer-funded research project no. AAAA-A17-117122290011-5.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. N. Gabov.

Additional information

Translated by D. Konyushkov

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gabov, D.N., Yakovleva, Y.V., Vasilevich, R.S. et al. Polycyclic Aromatic Hydrocarbons in Peat Mounds of the Permafrost Zone. Eurasian Soil Sc. 52, 1038–1050 (2019). https://doi.org/10.1134/S1064229319090035

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229319090035

Keywords: