Skip to main content
Log in

Ecotoxicity of Copper, Nickel, and Zinc Nanoparticles Assessment on the Basis of Biological Indicators of Chernozems

  • DEGRADATION, REHABILITATION, AND CONSERVATION OF SOILS
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

Ecotoxicity of nanoparticles (50–100 nm) of Cu, Ni, and Zn has been assessed by changes in biological indicators of an ordinary chernozem (Haplic Chernozem (Loamic)) of Rostov-on-Don in the laboratory model experiment with incubation of soil samples with nanopowders of these elements added to soil in concentrations 100, 1000, and 10 000 mg/kg. The effects of biological indicators have been determined 10, 30, and 90 days after soil contamination. The addition of Cu, Ni, and Zn nanoparticles led to a decrease of the total number of bacteria, abundance of Azotobacter bacteria, catalase and dehydrogenase activities, and germination and length of roots of radish sown. Reliable cases of hormesis were not detected. Nanoparticles of Cu and Zn showed higher toxicity than Ni nanoparticles, and this was inconsistent with the hypothesis, according to which the toxicity of nanoparticles depended only on their size and did not depend on chemical nature of the element. According to the integral indicator of biological state of soil, maximal toxicity of Cu, Ni, and Zn nanoparticles was observed on the 30th day after contamination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. O. Baklitskaya, “Silver nanoparticles can be dangerous,” Nauka Zhizn’, Apr. 19, (2011). http://www.nkj. ru/news/19470/. Accessed March 1, 2016.

  2. Yu. N. Vodyanitskii, “Contamination of soils with heavy metals and metalloids and its ecological hazard (analytic review),” Eurasian Soil Sci. 46, 793–801 (2013).

    Article  Google Scholar 

  3. T. D. Deryabina, “Safety evaluation of ions, nano- and microparticles of iron and cooper in the test with seed germination of Triticum aestivum,” Vestn. Orenb. Gos. Univ. 131 (12), 386–389 (2011).

    Google Scholar 

  4. K. Sh. Kazeev and S. I. Kolesnikov, Procedure for Biological Diagnostics of Soils (Southern Federal Univ., Rostov-on-Don, 2012) [in Russian].

    Google Scholar 

  5. Classification and Diagnostics of Soils of the Soviet Union (Kolos, Moscow, 1977) [in Russian].

  6. S. I. Kolesnikov, A. V. Evreinova, K. Sh. Kazeev, and V. F. Val’kov, “Changes in the ecological and biological properties of ordinary chernozems polluted by heavy metals of the second hazard class (Mo, Co, Cr, and Ni),” Eurasian Soil Sci. 42, 936–942 (2009).

    Article  Google Scholar 

  7. S. I. Kolesnikov, K. Sh. Kazeev, V. F. Val’kov, and S. V. Ponomareva, “Ranking of the chemical elements according to their ecological hazard for soil,” Russ. Agric. Sci. 36, 32–34 (2010).

    Article  Google Scholar 

  8. S. I. Kolesnikov, M. V. Yaroslavtsev, N. A. Spivakova, and K. Sh. Kazeev, “Comparative assessment of the biological tolerance of chernozems in the south of Russia towards contamination with Cr, Cu, Ni, and Pb in a model experiment,” Eurasian Soil Sci. 46, 176–181 (2013).

    Article  Google Scholar 

  9. I. A. Mamonova, “Effect of cooper nanoparticles on clinical strains of Staphylococcus epidermidis,” Vestn. Nov. Med. Tekhnol. 13 (1), 27–28 (2011).

    Google Scholar 

  10. I. A. Mamonova and I. V. Babushkina, “Antibacterial activity of nickel (II) nanoparticles,” Inf. Immun. 2 (1–2), 225 (2012).

    Google Scholar 

  11. Marketing Study of Nanopowder Market (Tekart, Moscow, 2009) [in Russian].

  12. S. N. Maslobrod, Yu. A. Mrigorod, V. G. Borodina, and N. A. Borshch, “Effect of water dispersed systems with silver and cooper nanoparticles on seed germination,” Elektrom. Obrab. Mater., No. 4, 103–112 (2014).

  13. Practical Manual on Soil Microbiology and Biochemistry, Ed. By D. G. Zvyagintsev (Moscow State Univ., Moscow, 1991) [in Russian].

    Google Scholar 

  14. On the turn of new technologies: analytical review. http://fs.moex.com/files/2496/. Accessed August 2, 2017.

  15. M. A. Fomina, Yu. N. Ivanycheva, and G. I. Churilov, “Effect of copper and copper oxid nanopowders on morphological parameters, chemical, composition, and activity of antioxidant protection of the hairy vetch Vicia villosa,” Vestn. Ross. Univ. Druzhby Nar., Ser. Ekol. Bezop. Zhiznedeyat., No. 3, 67–72 (2012).

  16. G. I. Churilov, “Effect of iron, copper, and cobalt nanopowders in the soil–plant system,” Vestn. Orenb. Gos. Univ. 106 (12), 148–151 (2009).

    Google Scholar 

  17. E. V. Yakusheva, E. A. Sizova, I. A. Gavrish, S. V. Lebedev, and F. G. Kayumov, “Effect of Al2O3 nanoparticles on soil microbiocenosis, activity of antioxidant system, and intestine microflora of the redworm (Eisenia foetida),” S-kh. Biol. 52 (1), 191–199 (2017).

    Google Scholar 

  18. S. Ali, M. A. Farooq, T. Yasmeen, S. Hussain, and M.  S. Arif, “The influence of silicon on the growth of barley, photosynthesis and ultrastructure in chromium-stress,” Ecotoxicol. Environ. Saf. 89, 66–72 (2013).

    Article  Google Scholar 

  19. B. Asadishad, S. Chahal, A. Akbari, V. Cianciarelli, M. Azodi, S. Ghoshal, and N. Tufenkji, “Amendment of agricultural soil with metal nanoparticles: effect on soil enzyme activity and microbial community composition,” Environ. Sci. Technol. 52 (4), 1908–1918 (2018).

    Article  Google Scholar 

  20. Y. W. Baek and Y. J. An, “Microbial toxicity of metal oxide nanoparticles (CuO, NiO, ZnO, and SbO2) to Escherichia coli, Bacillus subtilis, and Streptococcus aureus,” Sci. Total Environ. 409 (8), 1603–1608 (2011).

    Article  Google Scholar 

  21. H. Bayraktar, P. S. Ghosh, V. M. Rotello, and M. J. Knapp, “Disruption of protein–protein interactions using nanoparticles: inhibition of cytochrome C peroxidase,” Chem. Comm. 13, 1390–1392 (2006).

    Article  Google Scholar 

  22. T. Ben-Moshe, S. Frenk, I. Dror, D. Minz, and B. Berkowitz, “Effects of metal oxide nanoparticles on soil properties,” Chemosphere 90 (2), 640–646 (2013).

    Article  Google Scholar 

  23. A. K. Chatterjee, R. Chakraborty, and T. Basu, “Mechanism of antibacterial activity of copper nanoparticles,” Nanotechnology 25 (13), 1–2 (2014).

    Article  Google Scholar 

  24. D. Deryabin, E. Aleshina, A. Vasilchenko, T. Deryabina, L. Efremova, I. Karimov, and L. B. Korolevskaya, “Investigation of copper nanoparticles antibacterial mechanisms tested by luminescent Escherichia coli strains,” Nanotechnol. Russ. 8, 402–408 (2013).

    Article  Google Scholar 

  25. C. O. Dimkpa, A. Calder, D. W. Britt, J. E. McLean, and A. J. Anderson, “Responses of a soil bacterium, Pseudomonas chlororaphis O6 to commercial metal oxide nanoparticles compared with responses to metal ions,” Environ. Pollut. 159 (7), 1749–1756 (2011).

    Article  Google Scholar 

  26. C. O. Dimkpa, J. E. McLean, D. W. Britt, and A. J. Anderson, “CuO and ZnO nanoparticles differently affect the secretion of fluorescent siderophores in the beneficial root colonizer, Pseudomonas chlororaphis O6,” Nanotoxicology 6 (6), 635–642 (2012).

    Article  Google Scholar 

  27. C. O. Dimkpa, J. E. McLean, D. W. Britt, W. P. Johnson, B. Arey, A. S. Lea, and A. J. Anderson, “Nanospecific inhibition of pyoverdine siderophore production in Pseudomonas chlororaphis O6 by CuO nanoparticles,” Chem. Res. Toxicol. 25 (5), 1066–1074 (2012).

    Article  Google Scholar 

  28. Dinesh R., Anandaraj M., Srinivasan V., and Hamza, S. “Engineered nanoparticles in the soil and their potential implications to microbial activity,” Geoderma 173, 19–27 (2012).

    Article  Google Scholar 

  29. Y. S. El-Temsah and E. J. Joner, “Impact of Fe and Ag nanoparticles on seed germination and differences in bioavailability during exposure in aqueous suspension and soil,” Environ. Toxicol. 27 (1), 42–49 (2012).

    Article  Google Scholar 

  30. N. O. Fischer, C. M. McIntosh, J. M. Simard, and V. M. Rotello, “Inhibition of chymotrypsin through surface binding using nanoparticle-based receptors,” Proc. Natl. Acad. Sci. U.S.A. 99 (7), 5018–5023 (2002).

    Article  Google Scholar 

  31. Future markets, Nanomaterials, The global market for copper oxide nanoparticles, 2010–2025. Future markets: Tomorrow’s technology, 2015. http://www. f-uturemarketsinc.com/global-market-copper-oxide-nanoparticles-2010-2025.

  32. P. Gajjar, B. Pettee, D. W. Britt, W. Huang, W. P. Johnson, and A. J. Anderson, “Antimicrobial activities of commercial nanoparticles against an environmental soil microbe, Pseudomonas putida KT2440,” J. Biol. Eng. 3 (9), 1–13 (2009).

    Article  Google Scholar 

  33. M. Ghosh, S. Bhadra, A. Adegoke, M. Bandyopadhyay, and A. Mukherjee, “MWCNT uptake in Allium cepa root cells induces cytotoxic and genotoxic responses and results in DNA hyper-methylation,” Mutat. Res. 774, 49–58 (2015).

    Article  Google Scholar 

  34. C. Gunawan, W. Y. Teoh, C. P. Marquis, and R. Amal, “Cytotoxic origin of copper (II) oxide nanoparticles: comparative studies with micron-sized particles, leachate, and metal salts,” ACS Nano 5 (9), 7214–7225 (2011).

    Article  Google Scholar 

  35. R. Hong, N. O. Fischer, A. Verma, C. M. Goodman, T. Emrick, and V. M. Rotello, “Control of protein structure and function through surface recognition by tailored nanoparticle scaffolds,” J. Am. Chem. Soc. 126 (3), 739–743 (2004).

    Article  Google Scholar 

  36. L. Jin, Y. Son, J. L. DeForest, Y. J. Kang, W. Kim, and H. Chung, “Single-walled carbon nanotubes alter soil microbial community composition,” Sci. Total. Environ. 466 (1), 533–538 (2014).

    Article  Google Scholar 

  37. S. S. Karajanagi, A. A. Vertegel, R. S. Kane, and J. S. Dordick, “Structure and function of enzymes adsorbed onto single-walled carbon nanotubes,” Langmuir 20 (26), 11594–11599 (2004).

    Article  Google Scholar 

  38. H. L. Karlsson, P. Cronholm, J. Gustafsson, and L. Möller, “Copper oxide nanoparticles are highly toxic: a comparison between metal oxide nanoparticles and carbon nanotubes,” Chem. Res. Toxicol. 21 (9), 1726–1732 (2008).

    Article  Google Scholar 

  39. H. J. Kim, T. Phenrat, R. D. Tilton, and G. V. Lowry, “Effect of kaolinite, silica fines and pH on transport of polymer-modified zero valent iron nanoparticles in heterogeneous porous media,” J. Colloid Interface Sci. 370 (1), 1–10 (2012).

    Article  Google Scholar 

  40. S. Kim, J. Kim, and I. Lee, “Effects of Zn and ZnO nanoparticles and Zn2+ on soil enzyme activity and bioaccumulation of Zn in Cucumis sativus,” Chem. Ecol. 27 (1), 49–55 (2011).

    Article  Google Scholar 

  41. S. Kim, H. Sin, S. Lee, and I. Lee, “Influence of metal oxide particles on soil enzyme activity and bioaccumulation of two plants,” J. Microbiol. Biotechnol. 23 (9), 1279–1286 (2013).

    Article  Google Scholar 

  42. N. Kumar, V. Shah, and V. K. Walker, “Perturbation of an arctic soil microbial community by metal nanoparticles,” J. Hazard. Mater. 190 (1–3), 816–822 (2011).

    Article  Google Scholar 

  43. X. Li, Y. Yang, L. Jia, H. Chen, and X. Wei, “Zinc-induced oxidative damage, antioxidant enzyme response and proline metabolism in roots and leaves of wheat plants,” Ecotoxicol. Environ. Saf. 89, 150–157 (2013).

    Article  Google Scholar 

  44. D. Lin and B. Xing, “Phytotoxicity of nanoparticles: inhibition of seed germination and root growth,” Environ. Pollut. 150 (2), 243–250 (2007).

    Article  Google Scholar 

  45. O. Mahapatra, M. Bhagat, C. Gopalakrishnan, and K. D. Arunachalam, “Ultrafine dispersed CuO nanoparticles and their antibacterial activity,” J. Exp. Nanosci. 3 (3), 185–193 (2008).

    Article  Google Scholar 

  46. A. Manceau, K. L. Nagy, M. A. Marcus, M. Lanson, N. Geoffroy, and T. Jacquet, “Formation of metallic copper nanoparticles at the soil–root interface,” Environ. Sci. Technol. 42 (5), 1766–1772 (2008).

    Article  Google Scholar 

  47. M. Mortimer, K. Kasemets, M. Vodovnik, R. Marinsek-Logar, and A. Kahru, “Exposure to CuO nanoparticles changes the fatty acid composition of protozoa Tetrahymena thermophile,” Environ. Sci. Technol. 45 (15), 6617–6624 (2011).

    Article  Google Scholar 

  48. A. L. Neal, “What can be inferred from bacterium-nanoparticle interactions about the potential consequences of environmental exposure to nanoparticles?” Ecotoxicology 17 (5), 362–371 (2008).

    Article  Google Scholar 

  49. N. Padmavathy and R. Vijayaraghavan, “Enhanced bioactivity of ZnO nanoparticles—an antimicrobial study,” Sci. Technol. Adv. Mater. 9 (3), 581–588 (2008).

    Article  Google Scholar 

  50. A. Riahi-Madvar, F. Rezaee, and V. Jalali, “Effects of alumina nanoparticles on morphological properties and antioxidant system of Triticum aestivum,” Iran. J. Sci. Technol., Trans. Electr. Eng. 3 (1), 595–603 (2012).

    Google Scholar 

  51. A. K. Shaw and Z. Hossain, “Impact of nano-CuO stress on rice (Oryza sativa L.) seedlings,” Chemosphere 93 (6), 906–915 (2013).

    Article  Google Scholar 

  52. Z. L. J. Wang, J. Zhao, and B. Xing, “Toxicity and internalization of CuO nanoparticles to prokaryotic alga Microcystis aeruginosa as affected by dissolved organic matter,” Environ. Sci. Technol. 45 (14), 6032–6040 (2011).

    Article  Google Scholar 

  53. Z. L. J. Wang, B. Wu, A. Horst, Y. Kang, Y. J. Tang, and D. R. Chen, “Anti-microbial activities of aerosolized transition metal oxide nanoparticles,” Chemosphere 80 (5), 525–529 (2010).

    Article  Google Scholar 

  54. Z. T. W. H. Xiong, “Copper toxicity and bioaccumulation in Chinese cabbage (Brassica pekinensis Rupr.),” Environ. Toxicol. 20, 188–194 (2005).

    Article  Google Scholar 

  55. G. Yadav, P. K. Shrivastava, V. P. Singh, and S. M. Prasad, “The intensity of light changes the degree of arsenic toxicity in seedlings Helianthus annuus L.,” Biol. Trace Elem. Res. 158 (1), 410–421 (2014).

    Article  Google Scholar 

  56. S. Yan, L. Zhao, H. Li, Q. Zhang, J. Tan, M. Huang, S. He, and L. Li, “Single-walled carbon nanotubes selectively influence maize root tissue development accompanied by the change in the related gene expression,” J. Hazard. Mater. 246–247, 110–118 (2013).

    Article  Google Scholar 

  57. I. Yruela, “Copper in plants,” Braz. J. Plant Physiol. 17 (1), 145–156 (2005).

    Article  Google Scholar 

Download references

Funding

This work was supported by the Ministry of Science and Higher Education of the Russian Federation (project no. 5.5735.2017/8.9) and by the President of the Russian Federation (project SS-3464.2018.11).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. I. Kolesnikov.

Additional information

Translated by T. Chicheva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolesnikov, S.I., Timoshenko, A.N., Kazeev, K.S. et al. Ecotoxicity of Copper, Nickel, and Zinc Nanoparticles Assessment on the Basis of Biological Indicators of Chernozems. Eurasian Soil Sc. 52, 982–987 (2019). https://doi.org/10.1134/S106422931908009X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106422931908009X

Keywords:

Navigation