Skip to main content
Log in

Viscoelastic Behavior of Vertic Solonetz in the Kamennaya Steppe

  • SOIL PHYSICS
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

The aim of this work is to determine viscoelastic behavior parameters of soil pastes and micromonoliths of natric and vertic horizons in the profile of Vertic Solonetz from the Kamennaya Steppe (Voronezh oblast, Russia) and to use rheological properties to explain the formation of three irregular alteration structures with different wavelengths and deformation patterns of the soil mass. The rheological parameters of six soil horizons were determined by the amplitude sweep tests using an MCR-302 rheometer with parallel plates. The general features of viscoelastic behavior of soil pastes and micromonoliths, the correlation between the storage modulus G'LVR in the linear range of viscoelastic behavior of pastes and micromonoliths with their moisture, the distribution of rheological properties in the soil profile, and the relationship between the content of exchangeable sodium and the integral Iz used for the evaluation of structural stiffness are discussed. Rheological properties of Vertic Solonetz are compared with published data on Vertisols from Brazil, Russia, and USA and on saline clay alluvial soil from Spain. A hypothesis of formation of the profile of Vertic Solonetz with the gilgai microtopography as dependent on the rheological characteristics of the viscoelastic behavior of the studied soil horizons is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

Notes

  1. In published English works, another abbreviation for the tangent of angle δ—tanδ— is often used.

REFERENCES

  1. L. P. Abrukova, “The study of the thixotropic properties of soils using the rotational viscometer RV-8,” Pochvovedenie, No. 8, 83–91 (1970).

    Google Scholar 

  2. N. I. Gorbunov and L. P. Abrukova, “Rheological properties and mineralogical composition of vertic soils,” Pochvovedenie, No. 8, 74–85 (1974).

    Google Scholar 

  3. E. A. Dmitriev, Mathematical Statistics in Soil Science (Moscow State Univ., Moscow, 1995) [in Russian].

    Google Scholar 

  4. Yu. A. Zhukova, D. D. Khaydapova, I. V. Kovda, and E. G. Morgun, “Rheological properties of vertisol complexes formed under different climate conditions,” Moscow Univ. Soil Sci. Bull. 70, 110–115 (2015).

    Article  Google Scholar 

  5. L. L. Shishov, V. D. Tonkonogov, I. I. Lebedeva, and M. I. Gerasimova, Classification and Diagnostic System of Russian Soils (Oikumena, Smolensk, 2004) [in Russian].

    Google Scholar 

  6. V. V. Klyueva and D. D. Khaydapova, “Rheological properties of undisturbed and disturbed samples of soddy-podzolic and agrosoddy-podzolic soils,” Byull. Pochv. Inst. im. V.V. Dokuchaeva, No. 89, 21–35 (2017).

    Google Scholar 

  7. A. S. Manucharov, Fundamentals of Rheology in Soil Science (Moscow State Univ., Moscow, 1983) [in Russian].

    Google Scholar 

  8. Field Guide for Identification of Russian Soils (Dokuchaev Soil Science Inst., Moscow, 2008) [in Russian].

  9. N. B. Khitrov, “Vertigenesis in soils of the Central chernozemic region of Russia,” Eurasian Soil Sci. 45, 834–842 (2012).

    Article  Google Scholar 

  10. N. B. Khitrov, V. P. Vlasenko, and L. V. Rogovneva, “Statistical indicators of the bowl-shaped and diapir-like morphostructures of Vertisols of the Vorontsovskaya Depression,” Byull. Pochv. Inst. im. V.V. Dokuchaeva, No. 77, 3–28 (2015).

    Google Scholar 

  11. N. B. Khitrov, E. P. Zazovskaya, and L. V. Rogovneva, “Morphology, radiocarbon age, and genesis of Vertisols of the Eisk Peninsula (the Kuban–Azov Lowland),” Eurasian Soil Sci. 51, 731–743 (2018). https://doi.org/10.1134/S1064229318070050

    Article  Google Scholar 

  12. N. B. Khitrov and L. V. Rogovneva, “Two-dimensional distribution of the properties of vertic solonetz with gilgai microtopography in the Kamennaya Steppe,” Eurasian Soil Sci. 51, 1275–1287 (2018). https://doi.org/10.1134/S1064229318110030

    Article  Google Scholar 

  13. W. Baumgarten, PhD Thesis (Christian-Albrechts-Universität, Kiel, 2013).

  14. W. Baumgarten, Th. Neugebauer, E. Fuchs, and R. Horn, “Structural stability of marshland soils of the riparian zone of the tidal Elbe River,” Soil Tillage Res. 125, 80–88 (2012). https://doi.org/10.1016/j.still.2012.06.002

    Article  Google Scholar 

  15. T. A. Ghezzehei and D. Or, “Rheological properties of wet soils and clays under steady a oscillatory stresses,” Soil Sci. Soc. Am. J. 65, 624–637 (2001).

    Article  Google Scholar 

  16. E. G. Hallsworth, G. K. Robertson, and F. R. Gibbons, “Studies in pedogenesis in New South Wales. VII. The “gilgai” soils,” J. Soil Sci. 6 (1), 1–31 (1955).

    Article  Google Scholar 

  17. D. Holthusen, P. Pértile, J. M. Reichert, and R. Horn, “Controlled vertical stress in a modified amplitude sweep test (rheometry) for the determination of soil microstructure stability under transient stresses,” Geoderma 295, 129–141 (2017). https://doi.org/10.1016/j.geoderma.2017.01.034

    Article  Google Scholar 

  18. D. Holthusen, S. Peth, and R. Horn, “Impact of potassium concentration and matric potential on soil stability derived from rheological parameters,” Soil Tillage Res. 111, 75–85 (2010). https://doi.org/10.1016/j.still.2010.08.002

    Article  Google Scholar 

  19. D. Holthusen, D. Reeb, and R. Horn, “Influence of potassium fertilization, water and salt stress, and their interference on rheological soil parameters in planted containers,” Soil Tillage Res. 125, 72–79 (2012). https://doi.org/10.1016/j.still.2012.05.003

    Article  Google Scholar 

  20. IUSS Working Group WRB, World Reference Base for Soil Resources, 2006, First Update 2007, World Soil Resources Reports No. 103 (Food and Agriculture Organization, Rome, 2007).

  21. IUSS Working Group WRB, World Reference Base for Soil Resources 2014, Update 2015. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps, World Soil Resources Reports No. 106 (Food and Agriculture Organization, Rome, 2015).

  22. T. Keller, M. Lamandé, S. Peth, M. Berli, J.-Y. Delenne, W. Baumgarten, W. Rabbel, F. Radjaï, J. Rajchenbach, A. P. S. Selvadurai, and D. Or, “An interdisciplinary approach towards improved understanding of soil deformation during compaction,” Soil Tillage Res. 128, 61–80 (2013). https://doi.org/10.1016/j.still.2012.10.004

    Article  Google Scholar 

  23. D. D. Khaidapova, V. V. Chestnova, E. V. Shein, and E. Yu. Milanovskii, “Rheological properties of typical chernozems (Kursk oblast) under different land uses,” Eurasian Soil Sci. 49, 890–897 (2016). https://doi.org/10.1134/S1064229316080044

    Article  Google Scholar 

  24. W. Markgraf, “Rheology in soils,” in Encyclopedia of Agrophysics, Ed. by J. Glinski, J. Horabik, and J. Lipiec (Springer-Verlag, New York, 2011), pp. 700–705. https://doi.org/10.1007/978-90-481-3585-1

    Google Scholar 

  25. W. Markgraf, R. Horn, and S. Peth, “An approach to rheometry in soil mechanics—Structural changes in bentonite, clayey and silty soils,” Soil Tillage Res. 91, 1–14 (2006). https://doi.org/10.1016/j.still.2006.01.007

    Article  Google Scholar 

  26. W. Markgraf, F. Moreno, and R. Horn, “Quantification of microstructural changes in salorthidic fluvaquents using rheological and particle charge techniques,” Vadose Zone J. 11 (1), 1–11 (2012). https://doi.org/10.2136/vzj2011.0061

    Article  Google Scholar 

  27. W. Markgraf, C. W. Watts, W. R. Whalley, T. Hrkac, and R. Horn, “Influence of organic matter on rheological properties of soil,” Appl. Clay Sci. 64, 25–33 (2012). https://doi.org/10.1016/j.clay.2011.04.009

    Article  Google Scholar 

  28. B. Maxwell, “Influence of horizontal stresses on gilgai landforms,” J. Geotech. Eng. 120, 1437–1444 (1994).

    Article  Google Scholar 

  29. B. Maxwell, “The origin of hogwallows and gilgai landforms–Part 1, 2013. http://thecosmiccorner.blogspot.ru/ 2013/10/the-origin-of-hogwalllows-and-gilgai.html.

  30. T. G. Mezger, The Rheology Handbook: For Users of Rotational and Oscillatory Rheometers, 3rd ed. (Vincentz Network, Hanover, 2011).

    Google Scholar 

  31. H. Paquet, G. Bocquer, and G. Millot, “Néoformation et degradation des mineraux argileux dans certains solonétz solodises et Vertisols du Tchad,” Bull. Serv. Carte Geol. Als. Lorr. Strasburg 19, 295–322 (1966).

    Google Scholar 

  32. P. Pértile, J. M. Reichert, P. I. Gubiani, D. Holthusen, and A. da Costa, “Rheological parameters as affected by water tension in subtropical soils,” Rev. Bras. Cienc. Solo 40, e0150286 (2016). https://doi.org/10.1590/18069657rbcs20150286

    Article  Google Scholar 

  33. Soil Survey Staff, Soil Taxonomy. A Basic System of Soil Classification for Making and Interpreting Soil Surveys: Agricultural Handbook 436, nd ed. (US Department of Agriculture, Washington, DC, 1999).

  34. K. van der Meer, “Gilgai morphology of the Lufira Plain,” in Proceedings of 8th International Congress of Soil Science (Bucharest, 1964), pp. 697–701.

  35. E. M. White and R. G. Bonestell, “Some gilgaied soils in South Dakota,” Soil Sci. Soc. Am. Proc. 24 (4), 305–309 (1960).

    Article  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, project nos. 17-04-00555 and 16-04-01111.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. B. Khitrov.

Additional information

Translated by I. Bel’chenko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khitrov, N.B., Khaydapova, D.D. Viscoelastic Behavior of Vertic Solonetz in the Kamennaya Steppe. Eurasian Soil Sc. 52, 808–821 (2019). https://doi.org/10.1134/S1064229319070056

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229319070056

Keywords:

Navigation