Skip to main content
Log in

Acid–Base Characteristics and Clay Mineralogy in the Rhizospheres of Norway Maple and Common Spruce and in the Bulk Mass of Podzolic Soil

  • MINERALOGY AND MICROMORPHOLOGY OF SOILS
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

Acid–base characteristics and composition of clay minerals were estimated in the rhizospheres of Norway maple (Acer platanoides) and common spruce (Picea abies) and in the corresponding bulk soil samples taken in five replicates from the AELao horizon of podzolic soils. On the plot under spruce forest, both rhizospheric and nonrhizosheric soils were found to be more acid than those on the plot with a considerable part of maple trees in the forest stand. No reliable differences in pH values were found between the maple rhizosphere and corresponding bulk soil, while the rhizospheric soil under spruce forest had significantly lower pH values as compared with the enclosing soil. The rhizospheric soil under both tree species was found to contain reliably more illite minerals in clay-sized fraction, which could be due to the intensification of illitization and physical disintegration of micas and illites in coarse fractions. Under spruce forest stand, the clay fraction in both rhizospheric and nonrhizosheric soils contained more expandable minerals and less kaolinite and illites as compared with those under maple parcel. These differences can be explained partly by the spatial variability of clay composition in the parent material (mantle sandy loam) and, partly, by the dissimilarities in the functioning of different tree species and associated microbial communities causing lower pH values in soils under spruce forest. In the maple rhizospheric soil, pedogenic chlorites were characterized by a higher degree of aluminization in comparison with the enclosing soil owing to more favorable acid–base conditions. A tendency for a deeper transformation of illites into expandable clay minerals was revealed in the spruce rhizospheric soil as compared with the bulk soil, which can be explained by a more acid reaction facilitating the mobilization of aluminum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

Notes

  1. Soil names are given in the author’s edition.

REFERENCES

  1. R. Kh. Aidinyan, Extraction of Clay from Soils: Brief Instruction (Giprovodkhoz, Moscow, 1960) [in Russian].

    Google Scholar 

  2. S. A. Alekseeva, T. Ya. Dronova, and T. A. Sokolova, “Chemical and mineralogical characteristics of podzolic and bog-podzolic soils developed from two-layered deposits in the Central Forest State Biospheric Reserve,” Moscow Univ. Soil Sci. Bull. 62, 140–148 (2007).

    Article  Google Scholar 

  3. Yu. N. Blagoveshchenskii, E. A. Dmitriev, and V. P. Samsonova, Use of Nonparametric Methods in Soil Science (Moscow State Univ., Moscow, 1985) [in Russian].

    Google Scholar 

  4. I. I. Vasenev and V. O. Targulian, Windfall and Taiga Pedogenesis (Nauka, Moscow, 1995) [in Russian].

    Google Scholar 

  5. L. A. Vorob’eva, Chemical Analysis of Soils (Moscow State Univ., Moscow, 1998) [in Russian].

    Google Scholar 

  6. I. V. Danilin, “Comparative analysis of chemical properties of pale-podzolic soil in the rhizosphere of Norway maple (Acer platanoides) and other environments,” in Proceedings of XXIV International Scientific Conference of Students, Postgraduate Students, and Young Scientists “Lomonosov–2017” (MAKS Press, Moscow, 2017), p. 223.

  7. L. O. Karpachevskii, Variability of the Soil Cover in Forest Biogeocenoses (Moscow State Univ., Moscow, 1977) [in Russian].

    Google Scholar 

  8. A. V. Kiryushin, T. A. Sokolova, and T. Ya. Dronova, “Mineralogical composition of fine fractions in podzolic and gleyic peat-podzolic soils on two-layered deposits in the Central Forest State Reserve,” Eurasian Soil Sci. 35, 1202–1212 (2002).

    Google Scholar 

  9. L. L. Shishov, V. D. Tonkonogov, I. I. Lebedeva, and M. I. Gerasimova, Classification and Diagnostic System of Russian Soils (Oikumena, Smolensk, 2004) [in Russian].

    Google Scholar 

  10. World Reference Base for Soil Resources 2014, Update 2015, International Soil Classification System for Naming Soils and Creating Legends for Soil Maps, World Soil Resources Reports No. 106 (Food and Agriculture Organization, Rome, 2014; Moscow State Univ., Moscow, 2017).

  11. Regulatory Role of Soils in Functioning of Taiga Ecosystems, Ed. by G. V. Dobrovol’skii (Nauka, Moscow, 2002) [in Russian].

    Google Scholar 

  12. The X-Ray Identification and Crystal Structures of Clay Minerals, Ed. by G. Brown (Mineralogical Society, London, 1961; Mir, Moscow, 1965).

  13. L. E. Rodin and N. I. Bazilevich, Dynamics of Organic Matter and Biological Cycle of Ash Elements and Nitrogen in Major Types of World Vegetation (Nauka, Moscow, 1965) [in Russian].

    Google Scholar 

  14. T. A. Sokolova, T. Ya. Dronova, and I. I. Tolpeshta, Clay Minerals in Soils (Grif i K, Tula, 2005) [in Russian].

    Google Scholar 

  15. T. A. Sokolova, I. I. Tolpeshta, L. V. Lysak, and T. S. Chalova, “Specificity of some soil characteristics in the rhizosphere of spruce in the AEL horizon of podzolic soil,” Moscow Univ. Soil Sci. Bull. 70, 139–146 (2015).

    Article  Google Scholar 

  16. V. O. Targulian and M. I. Gerasimova, Global Reference Base for Soil Resources as the Basis for International Classification and Correlation of Soils (KMK, Moscow, 2007) [in Russian].

    Google Scholar 

  17. I. I. Tolpeshta, T. A. Sokolova, E. Bonifacio, and G. Falcone, “Pedogenic chlorites in podzolic soils with different intensities of hydromorphism: origin, properties, and conditions of their formation,” Eurasian Soil Sci. 43, 777–787 (2010).

    Article  Google Scholar 

  18. I. I. Tolpeshta, T. A. Sokolova, A. A. Vorob’eva, and Yu. G. Izosimova, “Transformation of trioctahedral mica in the upper mineral horizon of podzolic soil during the two-year-long field experiment,” Eurasian Soil Sci. 51, 843–856 (2018). https://doi.org/10.1134/S1064229318050125

    Article  Google Scholar 

  19. L. B. Kholopova, Dynamics of Soil Properties in Forests of Moscow Region (Nauka, Moscow, 1982) [in Russian].

    Google Scholar 

  20. R. April and D. Keller, “Mineralogy of the rhizosphere in forest soils of the eastern United States,” Biogeochemistry 9, 1–18 (1990).

    Article  Google Scholar 

  21. J. M. Arocena and K. R. Glowa, “Mineral weathering in ectomycorrhizosphere of subalpine fir (Abies lasiocarpa (Hook) Nutt.) as revealed by soil solution composition,” For. Ecol. Manage. 133, 61–70 (2000).

    Article  Google Scholar 

  22. J. M. Arocena, K. R. Glowa, H. B. Massicotte, and L. Lavkulich, “Chemical and mineral composition of ectomyccorhizosphere soils of subalpine fir (Abies lasiocarpa (Hook) Nutt.) in the E horizon of a luvisol,” Can. J. Soil Sci. 79, 25–35 (1999).

    Article  Google Scholar 

  23. L. Augusto, J. Ranger, M.-P. Turpault, and P. Bonnaud, “Experimental in situ transformation of vermiculites to study the weathering impact of tree species on the soil,” Eur. J. Soil Sci. 52, 81–92 (2001).

    Article  Google Scholar 

  24. M. R. Bakker, E. George, M.-P. Turpault, J. L. Zhang, and B. Zeller, “Impact of Douglas fir and Scots pine seedlings on plagioclase weathering under acid conditions,” Plant Soil 266, 247–259 (2004).

    Article  Google Scholar 

  25. S. Bonneville, D. J. Morgan, A. Schmalenberger, A. Bray, A. Brown, S. A. Banwart, and L. G. Benning, “Tree-mycorrhiza symbiosis accelerates mineral weathering: Evidences from nanometer-scale elemental fluxes at the hypha–mineral interface,” Geochim. Cosmochim. Acta 75, 6988–7005 (2011).

    Article  Google Scholar 

  26. S. M. Bourbia, P. Barre, M. B. N. Kaci, A. Derridj, and B. Velde, “Potassium status in bulk and rhizospheric soils of olive groves in North Algeria,” Geoderma 197–198, 161–168 (2013).

    Article  Google Scholar 

  27. C. Calvaruso, M.-P. Turpault, and P. Frey-Klett, “Root-associated bacteria contribute to mineral weathering and to mineral nutrition in trees: a budgeting analysis,” Appl. Environ. Microbiol. 72 (2), 1258–1266 (2006).

    Article  Google Scholar 

  28. F. Courchesne and G. R. Gobran, “Mineralogical variations of bulk and rhizosphere soils from a north spruce,” Soil Sci. Soc. Am. J. 61, 1245–1249 (1997).

    Article  Google Scholar 

  29. P.-E. Courty, M. Buée, A. G. Diedhiou, P. Frey-Klett, F. Le Tacon, F. Rineau, M.-P. Turpault, S. Uroz, and J. Garbaye, “The role of ectomycorrhizal communities in forest ecosystem processes: new perspectives and emerging concepts,” Soil Biol. Biochem. 42, 679–698 (2010).

    Article  Google Scholar 

  30. F. D. Dakora and D. A. Phillips, “Root exudates as mediators of mineral acquisition in low-nutrient environments,” Plant Soil 245, 35–47 (2002).

    Article  Google Scholar 

  31. Y. Dessaux, P. Hinsinger, and P. Lemanceau, “Rhizosphere: so many achievements and even more challenges,” Plant Soil 321, 1–3 (2009).

    Article  Google Scholar 

  32. A. Dieffenbach and E. Matzner, “In situ soil solution chemistry in the rhizosphere of mature Norway spruce (Picea abies (L.) Karst.) trees,” Plant Soil 222, 149–161 (2000).

    Article  Google Scholar 

  33. F. A. Dijekstra, C. Geibe, S. Holmstrom, U. S. Lundstrom, and N. van Breemen, “The effect of organic acids on base cation leaching from the forest floor under six North American tree species,” Eur. J. Soil Sci. 52, 205–214 (2001).

    Article  Google Scholar 

  34. F. A. Dijekstra and R. D. Fitzhung, “Aluminum solubility in relation to organic carbon in surface soils affected by six tree species of the northeastern United States,” Geoderma 114, 33–47 (2003).

    Article  Google Scholar 

  35. R. Dinesh, V. Srinivasan, S. Hamza, V. A. Parthasarathy, and K. C. Aipe, “Physico-chemical, biochemical and microbial properties of the rhizospheric soils of tree species used as supports for black pepper cultivation in the humid tropics,” Geoderma 158, 252–258 (2010).

    Article  Google Scholar 

  36. J. B. Dixon and D. G. Schulze, Soil Mineralogy with Environmental Application (Madison, 2002).

    Google Scholar 

  37. R. D. Finlay, “Ecological aspects of mycorrhizal symbiosis: with special emphasis on the functional diversity of interactions involving the extraradical mycelium,” J. Exp. Bot. 59, 1115–1126 (2008).

    Article  Google Scholar 

  38. K. R. Glowa, J. M. Arocena, and H. B. Massicotte, “Properties of soils influenced by ectomycorrhizal fungi in hybrid spruce (Picea glauca × engelmannii (Moench.) Voss),” Can. J. Soil Sci. 84, 91–102 (2004).

    Article  Google Scholar 

  39. G. R. Gobran, S. Clegg, and F. Courchesne, “Rhizosphere processes influencing the biogeochemistry of forest ecosystems,” Biogeochemistry 42, 107–120 (1998).

    Article  Google Scholar 

  40. P. J. Gregory, “Roots, rhizosphere and soil: the rout to a better understanding of soil science,” Eur. J. Soil Sci. 57, 2–12 (2006).

    Article  Google Scholar 

  41. R. P. Griffits, J. E. Baham, and B. A. Caldwell, “Soil solution chemistry of ectomycorrhizal mats in forest soil,” Soil Biol. Biochem. 26, 331–337 (1994).

    Article  Google Scholar 

  42. A. Hagen-Thorn, I. Callesen, K. Armolaitis, and B. Nilgard, “The impact of six European tree species on the chemistry of mineral topsoil in forest plantations on former agricultural land,” For. Ecol. Manage. 195, 373–384 (2004).

    Article  Google Scholar 

  43. P. Hinsinger, B. Jaillard, and J. E. Dufey, “Rapid weathering of a trioctahedral mica by the roots of ryegrass,” Soil Sci. Soc. Am. J. 56, 977–982 (1992).

    Article  Google Scholar 

  44. D. L. Jones, “Organic acids in the rhizosphere—a critical review,” Plant Soil 205, 25–44 (1998).

    Article  Google Scholar 

  45. L. A. Kluber, K. M. Tinnesand, B. A. Caldwell, S. M. Dunham, R. R. Yarwood, P. J. Bottomley, and D. D. Myrold, “Ectomycorrhizal mats alter forest soil biogeochemistry,” Soil Biol. Biochem. 42, 1607–1613 (2010).

    Article  Google Scholar 

  46. Y. Kuzyakov and E. Blagodatskaya, “Microbial hotspots and hot moments in soil: concept and review,” Soil Biol. Biochem. 83, 184–199 (2015).

    Article  Google Scholar 

  47. C. Leyval and J. Berthelin, “Weathering of mica by roots and rhizospheric microorganisms of pine,” Soil Sci. Soc. Am. J. 55, 1009–1101 (1991).

    Article  Google Scholar 

  48. D. M. Moore and R. C. Reynolds, X-Ray Diffraction and the Identification and Analysis of Clay Minerals (Oxford University Press, Oxford, 1997).

    Google Scholar 

  49. Z. Naderizadeh, H. Khademi, and J. M. Arocena, “Organic matter induced mineralogical changes in clay-sized phlogopite and muscovite in alfalfa rhizosphere,” Geoderma 159, 296–303 (2009).

    Article  Google Scholar 

  50. X. L. Otero, A. González-Guzman, V. S. Souza-Junior, A. Pérez-Alberti, and F. Macías, “Soil processes and nutrient bioavailability in the rhizosphere of Bolax gummifera in a subantarctic environment (Martial Mountains, Ushuaia–Argentina),” Catena 133, 432–440 (2015).

    Article  Google Scholar 

  51. R. Ouimet and L. Duchesne, “Base cation mineral weathering and total release rates from soils in three calibrated forest watersheds on the Canadian Boreal Shield,” Can. J. Soil Sci. 85, 245–260 (2005).

    Article  Google Scholar 

  52. F. Paris, P. Bonnaud, J. Ranger, and F. Lapeyrie, “In vitro weathering of phlogopite by ectomycorrhizal fungi. I. Effect of K+ and Mg2+ deficiency on phyllosilicate evolution,” Plant Soil 177, 191–201 (1995).

    Article  Google Scholar 

  53. J. Ranger, E. Dambrine, M. Robert, D. Righi, and C. Felix, “Study of current soil-forming processes using bags of vermiculites and resins placed within soil horizons,” Geoderma 48, 335–350 (1991).

    Article  Google Scholar 

  54. J. Ranger and C. Nys, “The effect of spruce (Picea abies Karst.) on soil development: an analytical and experimental research,” Eur. J. Soil Sci. 45, 193–204 (1994).

    Article  Google Scholar 

  55. A. Sandnes, T. D. Eldhuset, and G. Wollebæk, “Organic acids in root exudates and soil solution of Norway spruce and silver birch,” Soil Biol. Biochem. 37, 259–269 (2005).

    Article  Google Scholar 

  56. U. Skyllberg, K. Raulund-Rusmussen, and O. K. Borggaard, “pH buffering in acidic soils developed under Picea abies and Quercus robur—effects of soil organic matter, adsorbed cations and soil solution ionic strength,” Biogeochemistry 56, 51–74 (2001).

    Article  Google Scholar 

  57. G. Sposito, The Environmental Chemistry of Aluminum (CRC Press, Boca Raton, 1989).

    Google Scholar 

  58. W. Stumm, Chemistry of the Solid-Water Interface (Wiley, New York, 1992).

    Google Scholar 

  59. M. M. S. Tuason and J. M. Arocena, “Root organic acid exudates and properties of rhizosphere soils of white spruce (Picea glauca) and subalpine fir (Abies lasiocarpa),” Can. J. Soil Sci. 89, 287–300 (2009).

    Article  Google Scholar 

  60. M.-P. Turpault, G. R. Gobran, and P. Bonnaud, “Temporal variations of rhizosphere and bulk soil chemistry in a Douglas fir stand,” Geoderma 7, 490–496 (2007).

    Article  Google Scholar 

  61. M.-P. Turpault, C. Uterano, J.-P. Boudot, and J. Ranger, “Influence of mature Douglas fir roots on the solid soil phase of the rhizosphere and its solution chemistry,” Plant Soil 275, 327–336 (2005).

    Article  Google Scholar 

  62. M.-P. Turpault, D. Righi, and C. Uterano, “Clay minerals: precise markers of the spatial and temporal variability of the biogeochemical soil environment,” Geoderma 147, 108–115 (2008).

    Article  Google Scholar 

  63. D. Vetterlein, T. Kühn, K. Kaiser, and R. Jahn, “Illite transformation and potassium release upon changes in composition of the rhizophere soil solution,” Plant Soil 371, 267–279 (2013).

    Article  Google Scholar 

  64. J. Zhang and G. Eckhard, “Rhizosphere effects on ion concentrations near different root zones of Norway spruce (Picea abies (L.) Karst.) and root types of Douglas-fir (Pseudotsuga menziesii L.) seedling,” Plant Soil 322, 209–218 (2009).

    Article  Google Scholar 

Download references

FUNDING

The work was supported in part by the Russian Foundation for Basic Research, project no. 17-04-00374/17.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. A. Sokolova.

Additional information

Translated by K. Pankratova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sokolova, T.A., Tolpeshta, I.I., Danilin, I.V. et al. Acid–Base Characteristics and Clay Mineralogy in the Rhizospheres of Norway Maple and Common Spruce and in the Bulk Mass of Podzolic Soil. Eurasian Soil Sc. 52, 707–717 (2019). https://doi.org/10.1134/S1064229319060115

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229319060115

Keywords:

Navigation