Skip to main content

Changes in the Rate of Soil Loss in River Basins within the Southern Part of European Russia

Abstract

Four river basins located in the forest, forest-steppe, and steppe zones of European Russia were evaluated for two time intervals (1960–1985 and 1986–2015) based on the use of the Universal Soil Loss Equation (USLE) and State Hydrological Institute (SHI) models. The obtained results attest to multidirectional tendencies in the mean annual rates of erosion rates in different landscape zones. The rates of soil erosion have decreased in the forest and eastern steppe zones and have slightly increased in the southern steppe zone. The reduction of surface snowmelt runoff is one of the main reasons for the decrease of soil erosion in the investigated river basins. An increase in the rates of soil erosion is related to the growth of rainfall erosivity factor (R-factor), has been partially offset by an increase in the soil-protective coefficient of crops (C-factor).

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. V. N. Golosov, N. N. Ivanova, A. V. Gusarov, and A. G. Sharifullin, “Assessment of the trend of degradation of arable soils on the basis of data on the rate of stratozem development obtained with the use of 137Cs as a chronomarker,” Eurasian Soil Sci. 50, 1195–1208 (2017). https://doi.org/10.1134/S1064229317100039

    Article  Google Scholar 

  2. V. N. Golosov, I. I. Rysin, A. V. Gusarov, I. I. Grigor’ev, A. G. Sharifullin, and A. M. Gafurov, “Rate of erosive-accumulative processes in the watershed of Kuregovo ravine (the Agryzka River basin, Udmurt Republic),” in Proceedings of the All-Russia Scientific-Practical Conference and XXXII Interinstitutional Coordination Meeting “Evolution of Erosive-Channel Systems: Economic and Ecological Consequences, Evaluation and Registration” (Aeterna, Ufa, 2017), pp. 117–119.

  3. A. V. Gusarov, V. N. Golosov, A. G. Sharifullin, and A. M. Gafurov, “Contemporary trend in erosion of arable southern chernozems (haplic chernozems pachic) in the west of Orenburg oblast (Russia),” Eurasian Soil Sci. 51, 561–575 (2018). https://doi.org/10.1134/S1064229318050046

    Article  Google Scholar 

  4. O. G. Zolina, “Changes in the duration of synoptic rainy periods in Europe from 1950 to 2008 and their relation to extreme precipitation,” Dokl. Earth Sci. 436, 279–283 (2011).

    Article  Google Scholar 

  5. Unified state register of soil resources of Russia. http://atlas.mcx.ru/materials/egrpr/content/1sem.html. Accessed April 10, 2018.

  6. Unified State Register of Soil Resources of Russia, Version 1.0, Ed. by A. L. Ivanov and S. A. Shoba (Dokuchaev Soil Science Inst., Moscow, 2014) [in Russian].

    Google Scholar 

  7. N. P. Kanat’eva, S. F. Krasnov, and L. F. Litvin, “Modern dynamics of climatic factors of erosion in the northern part of the Volga region,” Erosiya Pochv Ruslovye Prots., No. 17, 14–28 (2010).

  8. M. A. Komissarov and I. M. Gabbasova, “Snowmelt-induced soil erosion on gentle slopes in the southern Cis-Ural region,” Eurasian Soil Sci. 47, 598–607 (2014). https://doi.org/10.1134/S1064229314060039

    Article  Google Scholar 

  9. G. A. Larionov, Erosion and Deflation of Soils (Moscow State Univ., Moscow, 1993) [in Russian].

    Google Scholar 

  10. L. F. Litvin, Geography of Erosion of Agricultural Soils in Russia (Akademkniga, Moscow, 2002) [in Russian].

    Google Scholar 

  11. L. F. Litvin, V. N. Golosov, N. G. Dobrovol’skaya, N. I. Ivanova, Z. P. Kiryukhina, and S. F. Krasnov, “Stationary studies of soil erosion during snow melting in the central nonchernozemic region,” Erosiya Pochv Ruslovye Prots., No. 11, 57–76 (1998).

  12. L. F. Litvin, Z. P. Kiryukhina, S. F. Krasnov, and N. G. Dobrovol’skaya, “Dynamics of agricultural soil erosion in European Russia,” Eurasian Soil Sci. 50, 1344–1353 (2017). https://doi.org/10.1134/S106422931711008

    Article  Google Scholar 

  13. K. A. Mal’cev and A. G. Sharifullin, “Morphological classification of small catchments in the river basins of developed plains,” Geomorfologiya, No. 3, 76–87 (2017).

    Google Scholar 

  14. A. I. Petel’ko and O. V. Bogacheva, “Effect of agricultural conditions on the snowmelt runoff,” in XXIV Plenary Interinstitutional Coordination Meeting on Erosion, Channel, and Estuary Processes (Altai State Univ., Barnaul, 2009), pp. 166–169.

  15. D. I. Rukhovich, P. V. Koroleva, N. V. Kalinina, E. V. Vil’chevskaya, M. S. Simakova, E. A. Dolinina, and S. V. Rukhovich, “State soil map of the Russian Federation: an ArcInfo version,” Eurasian Soil Sci. 46, 225–240 (2013). https://doi.org/10.1134/S1064229313030083

    Article  Google Scholar 

  16. I. I. Rysin, V. N. Golosov, I. I. Grigor’ev, and M. Yu. Zaytseva, “Effect of climate changes on the dynamics of ravine extension in Vyatka-Kama interfluve,” Geomorfologiya, No. 1, 90–103 (2017). https://doi.org/10.15356/0435-4281-2017-1-90-103

    Google Scholar 

  17. Russian Federal Statistical Service, Areas of arable land, http://www.gks.ru. Accessed April 10, 2018.

  18. E. P. Chernyshev and N. B. Ivanova, “Losses of organic and mineral substances in soils of the center and south of the Russian Plain during snow melting,” Pochvovedenie, No. 2, 73–83 (1993).

    Google Scholar 

  19. N. A. Chizhikova, “Spatial-temporal analysis of dynamics of rainfall in European Russia as an indicator of erosion rate in 1960–2015,” in Proceedings of the XI Seminar of Young Scientists of Higher Education Institutions Joined by Interinstitutional Scientific Coordination Council on the Problems of Erosion, Channel, and Estuary Processes (Kozma Minin State Pedagogical Univ., Nizhny Novgorod, 2016), pp. 251–258.

  20. I. A. Shiklomanov and V. Yu. Georgievskii, “Anthropogenic impact of climate change on the hydrological regime and water resources,” in Climate Change and Its Consequences (Nauka, St. Petersburg, 2002), pp. 152–164.

    Google Scholar 

  21. C. Bosco, D. de Rigo, O. Dewitte, J. Poesen, and P. Panagos, “Modeling soil erosion at European scale: towards harmonization and reproducibility,” Nat. Hazards Earth Syst. Sci. 15 (2), 225–245 (2015). https://doi.org/10.5194/nhess-15-225-2015

    Article  Google Scholar 

  22. M. Bossard, J. Feranec, and J. Otahel, CORINE Land Cover Technical Guide: Addendum 2000, Technical Report No. 40 (European Environmental Agency, Copenhagen, 2000).

  23. P. A. Burrough, R. A. McDonnell, and C. D. Lloyd, Principles of Geographical Information Systems (Oxford University Press, Oxford, 2015).

    Google Scholar 

  24. G. Büttner, J. Feranec, G. Jaffrain, L. Mari, G. Maucha, and T. Soukup, “The CORINE land cover 2000 project,” EARSeL eProc. 3 (3), 331–346 (2004).

    Google Scholar 

  25. V. Golosov, O. Yermolaev, L. Litvin, N. Chizhikova, Z. Kiryukhina, and G. Safina, “Influence of climate and land use changes on recent trends of soil erosion rates within the Russian Plain,” Land Degrad. Dev. 29 (8), 2658–2667 (2018). https://doi.org/10.1002/ldr.3061

    Article  Google Scholar 

  26. V. N. Golosov, D. E. Walling, A. V. Konoplev, M. M. Ivanov, and A. G. Sharifullin, “Application of bomb-and Chernobyl-derived radiocaesium for reconstructing changes in erosion rates and sediment fluxes from croplands in areas of European Russia with different levels of Chernobyl fallout,” J. Environ. Radioact. 186, 78–89 (2018). https://doi.org/10.1016/j.jenvrad.2017.06.019

    Article  Google Scholar 

  27. P. Y. Groisman, R. W. Knight, D. R. Easterling, T. R. Karl, G. C. Hegerl, and V. N. Razuvaev, “Trends in intense precipitation in the climate record,” J. Clim. 18 (9), 1326–1350 (2005).

    Article  Google Scholar 

  28. B. Grum, K. Woldearegay, R. Hessel, J. E. M. Baartman, M. Abdulkadir, E. Yazew, A. Kessler, C. J. Ritsema, and V. Geissen, “Assessing the effect of water harvesting techniques on event-based hydrological responses and sediment yield at a catchment scale in northern Ethiopia using the Limburg Soil Erosion Model (LISEM),” Catena 159, 20–34 (2017). https://doi.org/10.1016/j.catena.2017.07.018

    Article  Google Scholar 

  29. P. S. Kumar, T. V. Praveen, and M. A. Prasad, “Simulation of sediment yield over un-gauged stations using MUSLE and fuzzy model,” Aquat. Proc. 4, 1291–1298 (2015). https://doi.org/10.1016/j.aqpro.2015.02.168

    Article  Google Scholar 

  30. J. M. Laflen, W. J. Elliot, D. C. Flanagan, C. R. Meyer, and M. A. Nearing, “WEPP-predicting water erosion using a process-based model,” J. Soil Water Conserv. 52 (2), 96–102 (1997).

    Google Scholar 

  31. R. P. C. Morgan, D. D. V. Morgan, and H. J. Finney, “A predictive model for the assessment of soil erosion risk,” J. Agric. Eng. Res. 30, 245–253 (1984).

    Article  Google Scholar 

  32. R. P. C. Morgan, J. N. Quinton, R. E. Smith, G. Govers, J. W. A. Poesen, K. Auerswald, G. Chisci, D. Torri, M. E. Styczen, and A. J. V. Folley, The European Soil Erosion Model (EUROSEM): Documentation and User Guide (Silsoe College, Cranfield University, Bedford, 1998).

    Google Scholar 

  33. P. Panagos, P. Borrelli, J. Poesen, C. Ballabio, E. Lugato, K. Meusburger, L. Montanarella, and C. Alewell, “The new assessment of soil loss by water erosion in Europe,” Environ. Sci. Policy 54, 438–447 (2015). https://doi.org/10.1016/j.envsci.2015.08.012

    Article  Google Scholar 

  34. A. I. Petelko, V. N. Golosov, and V. R. Belyaev, “Experience of design of system of counter-erosion measures,” in Proceedings of the 10th International Symposium on River Sedimentation (Moscow, 2007), Vol. 1, pp. 311–316.

  35. L. Pieri, M. Bittelli, J. Q. Wu, Sh. Dun, D. C. Flanagan, P. R. Pisa, F. Ventura, and F. Salvatorelli, “Using the Water Erosion Prediction Project (WEPP) model to simulate field-observed runoff and erosion in the Apennines mountain range, Italy,” J. Hydrol. 336 (1–2), 84–97 (2007). https://doi.org/10.1016/j.jhydrol.2006.12.014

    Article  Google Scholar 

  36. L. Quijano, S. Begueria, L. Gaspar, and A. Navas, “Estimating erosion rates using 137Cs measurements and WATEM/SEDEM in a Mediterranean cultivated field,” Catena 138, 38–51 (2016).

    Article  Google Scholar 

  37. K. G. Renard, G. R. Foster, G. A. Weesies, D. K. McCool, and D. C. Yoder, Predicting Soil Erosion by Water: A Guide to Conservation Planning with the Revised Universal Soil Loss Equation (RUSLE), Agricultural Handbook No. 703 (US Department of Agriculture, Washington, 1997).

    Google Scholar 

  38. O. Vigiak, A. Malago, F. Bouraoui, M. Vanmaercke, and J. Poesen, “Adapting SWAT hillslope erosion model to predict sediment concentrations and yields in large basins,” Sci. Total Environ. 538, 855–875 (2015).

    Article  Google Scholar 

Download references

FUNDING

This study was supported in part by the Russian Science Foundation (project no. 15-17-20006) and the Institute of Geography, Russian Academy of Sciences (State Program no. 0148–2018–00013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. A. Mal’tsev.

Additional information

Translated by K. Pankratova

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mal’tsev, K.A., Ivanov, M.A., Sharifullin, A.G. et al. Changes in the Rate of Soil Loss in River Basins within the Southern Part of European Russia. Eurasian Soil Sc. 52, 718–727 (2019). https://doi.org/10.1134/S1064229319060097

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229319060097

Keywords:

  • soil erosion
  • basin approach
  • erosion models