Skip to main content
Log in

The Structure of Bacterial and Fungal Communities in the Rhizosphere and Root-Free Loci of Gray Forest Soil

  • SOIL BIOLOGY
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

The taxonomic composition, abundance, and diversity of bacterial and fungal communities in the rhizosphere loci and bulk mass of the gray forest soil (Eutric Retisol (Loamic, Aric, Cutanic, Humic)) under potatoes, maize, and white mustard grown with the application of mineral and organic fertilizers were compared. Among bacteria, Bacillus megaterium and Paenibacillus polymyxa species predominated in all the experimental variants. The micromycete community was represented by 39 species belonging to 19 genera. Under the impact of organic fertilizers, the abundance of Trichoderma harzianum—an antagonist of many phytopathogens—increased. A decrease in the abundance of representatives of Fusarium genus was observed both in the rhizosphere and in the bulk soil. Fertilization was the most significant factor determining the structure and diversity of micromycete communities both in the soil and rhizosphere. The application of mineral fertilizers reduced the diversity of micromycetes in soil, whereas the use of organic fertilizers increased it. In general, organic fertilizers proved to be more favorable for the rhizosphere and bulk soil mycobiomes and for the total soil suppressiveness than the mineral fertilizers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. E. V. Blagodatskaya, M. V. Semenov, and A. V. Yakushev, Activity and Biomass of Soil Microorganisms in Changing Environment (KMK, Moscow, 2016) [in Russian].

    Google Scholar 

  2. E. Yu. Voronina, “Abundance of soil bacteria and micromycetes in rhizosphere, mycorrhizosphere, and hyphosphere of symbiotic Basidiomycetes,” Mikol. Fitopatol. 43, 398–406 (2009).

    Google Scholar 

  3. A. M. Glushakova, A. V. Kachalkin, and I. Yu. Chernov, “Specific features of the dynamics of epiphytic and soil yeast communities in the thickets of Indian balsam on mucky gley soil,” Eurasian Soil Sci. 44, 886–892 (2011).

    Article  Google Scholar 

  4. V. S. Guzev, A. V. Kurakov, N. G. Bondarenko, and T. G. Mirchink, “The effect of lime and mineral fertilizers on the microbial system of soddy-podzolic soil,” Mikrobiologiya (Moscow) 53, 669–675 (1984).

    Google Scholar 

  5. T. G. Dobrovol’skaya, D. G. Zvyagintsev, I. Yu. Chernov, A. V. Golovchenko, G. M. Zenova, L. V. Lysak, N. A. Manucharova, O. E. Marfenina, L. M. Polyanskaya, A. L. Stepanov, and M. M. Umarov, “The role of microorganisms in the ecological functions of soils,” Eurasian Soil Sci. 48, 959–967 (2015). https://doi.org/10.1134/S1064229315090033

    Article  Google Scholar 

  6. I. V. Yevdokimov, “Dynamics of the rhizosphere effect in soils,” Eurasian Soil Sci. 46, 676–684 (2013). https://doi.org/10.1134/S1064229313060021

    Article  Google Scholar 

  7. N. B. Zinyakova and V. M. Semenov, “The effect of increasing doses of organic and mineral fertilizers on the pools of dissolved, mobile, and active organic matter in gray forest soil,” Agrokhimiya, No. 6, 8–19 (2014).

    Google Scholar 

  8. A. A. Kozlova and A. P. Makarova, “Soil microbiological characteristics of virgin and fallow gray forest soils of Angara region developed under conditions of hummocky topography,” Zhivye Biokosnye Sist., No. 7, (2014). http://www.jbks.ru/archive/issue-7/article-8.

  9. A. A. Mergel’, V. M. Semenov, and O. A. Sokolov, “Effect of concentrated locus of nitrogen fertilizers on nitrogen balance and enzymatic activity of gray forest soil,” Pochvovedenie, No. 12, 55–63 (1987).

    Google Scholar 

  10. Methods of Soil Microbiology and Biochemistry, Ed. by D. G. Zvyagintsev (Moscow State Univ., Moscow, 1991) [in Russian].

    Google Scholar 

  11. T. G. Mirchink, Soil Mycology (Moscow State Univ., Moscow, 1988) [in Russian].

    Google Scholar 

  12. A. V. Panov, T. Z. Esikova, S. L. Sokolov, I. A. Kosheleva, and A. M. Boronin, “Influence of soil pollution on the composition of a microbial community,” Microbiology (Moscow) 82, 241–248 (2013). https://doi.org/10.1134/S0026261713010116

    Article  Google Scholar 

  13. M. V. Semenov, E. V. Stolnikova, N. D. Ananyeva, and K. V. Ivashchenko, “Structure of the microbial community in soil catena of the right bank of the Oka River,” Biol. Bull. 40, 266–274 (2013). https://doi.org/10.1134/S1062359013030084

    Article  Google Scholar 

  14. T. I. Chernov, A. K. Tkhakakhova, and O. V. Kutovaya, “Assessment of diversity indices for the characterization of the soil prokaryotic community by metagenomic analysis,” Eurasian Soil Sci. 48, 410–415 (2015). https://doi.org/10.1134/S1064229315040031

    Article  Google Scholar 

  15. J. F. Angus, P. A. Gardner, J. A. Kirkegaard, and J. M. Desmarchelier, “Biofumigation: isothiocyanates released from Brassica roots inhibit growth of the take-all fungus,” Plant Soil 162, 107–112 (1994). https://doi.org/10.1007/BF01416095

    Article  Google Scholar 

  16. V. Chaudhry, A. Rehman, A. Mishra, P. S. Chauha, and C. S. Nautiyal, “Changes in bacterial community structure of agricultural land due to long-term organic and chemical amendments,” Microbiol. Ecol. 64, 450–460 (2012). https://doi.org/10.1007/s00248-012-0025-y

    Article  Google Scholar 

  17. L. R. Dartnell, S. J. Hunter, K. V. Lovell, A. J. Coates, and J. M. Ward, “Low-temperature ionizing radiation resistance of Deinococcus radiodurans and Antarctic Dry Valley bacteria,” Astrobiology 10, 717–732 (2010). https://doi.org/10.1089/ast.2009.0439

    Article  Google Scholar 

  18. M. Diacono and F. Montemurro, “Long-term effects of organic amendments on soil fertility: a review,” Agron. Sustainable Dev. 30, 401–422 (2010). https://doi.org/10.1007/978-94-007-0394-0_34

    Article  Google Scholar 

  19. K. H. Domsch, W. Gams, and T.-H. Anderson, Compendium of Soil Fungi, Ed. by W. Gams (IHW-Verlag, Eching, 2007).

  20. M. B. Ellis, Dematiaceous Hyphomycetes (Commonwealth Mycological Inst., Kew, 1971).

    Google Scholar 

  21. Y. Ge, J. B. Zhang, L. M. Zhang, M. Yang, and J. Z. He, “Long-term fertilization regimes affect bacterial community structure and diversity of an agricultural soil in northern China,” J. Soils Sediments 8, 43–50 (2008). https://doi.org/10.1065/jss2008.01.270

    Article  Google Scholar 

  22. D. J. Gonthier, K. K. Ennis, S. Farinas, H. Y. Hsieh, A. L. Iverson, P. Batary, J. Rudolphi, T. Tscharntke, B. J. Cardinale, and I. Perfecto, “Biodiversity conservation in agriculture requires a multi-scale approach,” Proc. R. Soc. London, Ser. B 281, 20141358 (2014). http://dx.org/10.1098/rspb.2014.1358.

    Article  Google Scholar 

  23. V. Govindasamy, M. Senthilkumar, V. Magheshwaran, U. Kumar, P. Bose, V. Sharma, and K. Annapurna, “Bacillus and Paenibacillus spp.: potential PGPR for sustainable agriculture,” in Plant Growth and Health Promoting (Springer-Verlag, Berlin, 2010), pp. 333–364. https://doi.org/10.1007/978-3-642-13612-2_15.10.1007/978-3-642-13612-2_15

  24. M. Gryndler, H. Hrselova, M. Vosatka, J. Votruba, and J. Klir, “Organic fertilization changes the response of mycelium of arbuscular mycorrhizal fungi and their sporulation to mineral NPK supply,” Folia Microbiol. 46, 540–542 (2001). https://doi.org/10.1007/BF02817999

    Article  Google Scholar 

  25. M. He, W. Ma, V. V. Zelenev, A. K. Khodzaeva, A. M. Kuznetsov, A. M. Semenov, V. M. Semenov, W. Blok, and A. H. van Bruggen, “Short-term dynamics of greenhouse gas emissions and cultivable bacterial populations in response to induced and natural disturbances in organically and conventionally managed soils,” Appl. Soil Ecol. 119, 294–306 (2017). https://doi.org/10.1016/j.apsoil.2017.07.011

    Article  Google Scholar 

  26. H. A. J. Hoitink and M. J. Boehm, “Biocontrol within the context of soil microbial communities: a substrate-dependent phenomenon,” Annu. Rev. Phytopathol. 37, 427–446 (1999). https://doi.org/10.1146/annurev.phyto.37.1.427

    Article  Google Scholar 

  27. D. Kleijn, F. Berendse, R. Smit, and N. Gilissen, “Agri-environment schemes do not effectively protect biodiversity in Dutch agricultural landscapes,” Nature 413, 723–725 (2001). https://doi.org/10.1038/35099540

    Article  Google Scholar 

  28. C. J. Kok, P. E. J. Hageman, P. T. Maas, J. Postma, N. J. M. Roozen, and J. W. L. van Vuurde, “Processed manure as carrier to introduce Trichoderma harzianum: population dynamics and biocontrol effect on Rhizoctonia solani,” Biocontrol Sci. Technol. 6, 147–162 (1996). https://doi.org/10.1080/09583159650039359

    Article  Google Scholar 

  29. D. J. Lane, “16S/23S rRNA sequencing,” in Nucleic Acid Techniques in Bacterial Systematics, Ed. by E. Stackebrandt and M. Goodfellow (Wiley, New York, 1991), pp. 115–175.

    Google Scholar 

  30. S. Loeppmann, M. Semenov, E. Blagodatskaya, and Y. Kuzyakov, “Substrate quality affects microbial and enzyme activities in rooted soil,” J. Plant Nutr. Soil Sci. 179, 39–47 (2016). https://doi.org/10.1002/jpln.201400518

    Article  Google Scholar 

  31. S. Loeppmann, M. Semenov, Y. Kuzyakov, and E. Blagodatskaya, “Shift from dormancy to microbial growth revealed by RNA: DNA ratio,” Ecol. Indic. 85, 603–612 (2018). https://doi.org/10.1016/j.ecolind.2017.11.020

    Article  Google Scholar 

  32. L. J. Ma, H. C. van Der Does, K. A. Borkovich, J. J. Coleman, M. J. Daboussi, A. Di Pietro, M. Dufresne, M. Freitag, M. Grabherr, B. Henrissat, and P. M. Houterman, “Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium,” Nature 464, 367–373 (2010). https://doi.org/10.1038/nature08850

    Article  Google Scholar 

  33. P. Mäder, A. Fliessbach, D. Dubois, L. Gunst, P. Fried, and U. Niggli, “Soil fertility and biodiversity in organic farming,” Science 296, 1694–1697 (2002). https://doi.org/10.1126/science.1071148

    Article  Google Scholar 

  34. S. Meidute, F. Demoling, and E. Bååth, “Antagonistic and synergistic effects of fungal and bacterial growth in soil after adding different carbon and nitrogen sources,” Soil Biol. Biochem. 40, 2334–2343 (2008). https://doi.org/10.1016/j.soilbio.2008.05.011

    Article  Google Scholar 

  35. R. Mendes, M. Kruijt, I. de Bruijn, E. Dekkers, M. van der Voort, J. H. M. Schneider, Y. M. Piceno, T. Z. DeSantis, G. L. Andersen, P. A. H. M. Bakker, and J. M. Raaijmakers, “Deciphering the rhizosphere microbiome for disease-suppressive bacteria,” Science 332, 1097–1100 (2011). https://doi.org/10.1126/science.1203980

    Article  Google Scholar 

  36. J. M. Raaijmakers, T. C. Paulitz, C. Steinberg, C. Alabouvette, and Y. Moenne-Loccoz, “The rhizosphere: a playground and battlefield for soil-borne pathogens and beneficial microorganisms,” Plant Soil 321, 341–361 (2009). https://doi.org/10.1007/s11104-008-9568-6

    Article  Google Scholar 

  37. M. B. Rodriguez, A. Godeas, and R. S. Lavado, “Soil acidity changes in bulk soil and maize rhizosphere in response to nitrogen fertilization,” Commun. Soil Sci. Plant Anal. 39, 2597–2607 (2008). https://doi.org/10.1080/00103620802358656

    Article  Google Scholar 

  38. A. V. Semenov, PhD Thesis (Wageningen Univ., Wageningen, 2008). http://edepot.wur.nl/122071.

    Google Scholar 

  39. K. Smalla, G. Wieland, A. Buchner, A. Zock, J. Parzy, S. Kaiser, N. Roskot, H. Heuer, and G. Berg, “Bulk and rhizosphere soil bacterial communities studied by denaturing gradient gel electrophoresis: plant-dependent enrichment and seasonal shifts revealed,” Appl. Environ. Microbiol. 67, 4742–4751 (2001). https://doi.org/10.1128/AEM.67.10.4742-4751.2001

    Article  Google Scholar 

  40. C. Suzuki, K. Nagaoka, A. Shimada, and M. Takenaka, “Bacterial communities are more dependent on soil type than fertilizer type, but the reverse is true for fungal communities,” Soil Sci. Plant Nutr. 55 (1), 80–90 (2009). https://doi.org/10.1111/j.1747-0765.2008.00344.x

    Article  Google Scholar 

  41. J. F. Toljander, J. C. Santos-González, A. Tehler, and R. D. Finlay, “Community analysis of arbuscular mycorrhizal fungi and bacteria in the maize mycorrhizosphere in a long-term fertilization trial,” FEMS Microbiol. Ecol. 65 (2), 323–338 (2008). https://doi.org/10.1111/j.1574-6941.2008.00512.x

    Article  Google Scholar 

  42. A. H. C. van Bruggen, M. He, V. V. Zelenev, V. M. Semenov, A. M. Semenov, E. V. Semenova, T. V. Kuznetsova, A. K. Khodzaeva, A. M. Kuznetsov, and M. V. Semenov, “Relationships between greenhouse gas emissions and cultivable bacterial populations in conventional, organic and long-term grass plots as affected by environmental variables and disturbances,” Soil Biol. Biochem. 114, 145–159 (2017). https://doi.org/10.1016/j.soilbio.2017.07.014

    Article  Google Scholar 

  43. A. H. C. van Bruggen and A. M. Semenov, “In search of biological indicators for plant health and disease suppression,” Appl. Soil Ecol. 15, 13–24 (2000). https://doi.org/10.1016/S0929-1393(00)00068-8

    Article  Google Scholar 

  44. A. H. C. van Bruggen and A. J. Termorshuizen, “Integrated approaches to root disease management in organic farming systems,” Australasian Plant Pathol. 32, 141–156 (2003). https://doi.org/10.1071/AP03029

    Article  Google Scholar 

  45. N. M. van Dam and H. J. Bouwmeester, “Metabolomics in the rhizosphere: tapping into belowground chemical communication,” Trends Plant Sci. 21, 256–265 (2016). https://doi.org/10.1016/j.tplants.2016.01.008

    Article  Google Scholar 

  46. L. van Overbeek and J. D. van Elsas, “Effects of plant genotype and growth stage on the structure of bacterial communities associated with potato (Solanum tuberosum L.),” FEMS Microbiol. Ecol. 64, 283–296 (2008). https://doi.org/10.1111/j.1574-6941.2008.00469.x

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This study was supported by the Russian Science Foundation, project no. 17-76-00002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Semenov.

Additional information

Translated by L. Kholopova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Semenov, M.V., Nikitin, D.A., Stepanov, A.L. et al. The Structure of Bacterial and Fungal Communities in the Rhizosphere and Root-Free Loci of Gray Forest Soil. Eurasian Soil Sc. 52, 319–332 (2019). https://doi.org/10.1134/S1064229319010137

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229319010137

Keywords:

Navigation