Skip to main content
Log in

The Effect of Contrasting Moistening Regimes on CO2 Emission from the Gray Forest Soil under a Grass Vegetation and Bare Fallow

  • Soil Physics
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

The effect of contrasting moisture regimes on the CO2 emission from the gray forest soils (Haplic Luvisols (Loamic, Cutanic, Humic)) under a grass vegetation and bare fallow was studied in a field simulation experiment in June–September, 2015 (Moscow region). Two short soil droughts (53 and 34 days) and a long one (94 days) were simulated on plots isolated from precipitation. A variant with regular irrigation, where the soil moisture was maintained 60–70% of their water holding capacity, was used as a control. Over the whole observation period, the CO2 emissions from the soils studied decreased by a factor of 1.8 compared to the control only in the variant with the grass vegetation under prolonged drought. During the first hours after irrigation of the dry plots, the soil respiration intensified due to the “Birch effect”. The magnitude of this effect was 84–104% in the soils under the grass vegetation and 114–133% in the fallow areas. Owing to this phenomenon, the total CO2 emission from the soils subjected to two short droughts was equal to the CO2 flux under regular moistening for the grass plots and exceeded it by almost 1.3 times for the fallow plots as compared to the control. However, the share of extra CO2 flux induced by moistening of the dry soils did not exceed 8–10% of the total CO2 emission over the whole observation period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. N. Vygodskaya, A. V. Varlagin, Yu. A. Kurbatova, A. V. Ol’chev, O. I. Panferov, F. A. Tatarinov, and N. V. Shalukhina, “Response of taiga ecosystems to extreme weather conditions and climate anomalies,” Dokl. Biol. Sci. 429, 571–574 (2009).

    Article  Google Scholar 

  2. A. N. Zolotokrylin, V. V. Vinogradov, and E. A. Cherenkova, “Dynamics of droughts in European Russia under conditions of global climate warming,” Probl. Ekol. Monit. Model. Ekosist. 21, 160–182 (2007).

    Google Scholar 

  3. V. O. Lopes de Gerenyu, A. V. Pochikalov, and I. N. Kurganova, “In situ determination of major items of the carbon budget in grassland ecosystems of Central Russia,” Tr. Prioksko-Terrasnogo Zapoved., No. 6, 56–64 (2015).

    Google Scholar 

  4. A. A. Titlyanova, N. P. Kosykh, N. P. Mironycheva-Tokareva, and I. P. Romanova, Underground Plant Organs in Herbaceous Ecosystems (Nauka, Novosibirsk, 1996) [in Russian].

    Google Scholar 

  5. A. A. Titlyanova and M. Tesarzheva, Regimes of Biological Cycle (Nauka, Novosibirsk, 1991) [in Russian].

    Google Scholar 

  6. Assessment Report on Climate Change and its Consequences in the Russian Federation (General Summary) (Roshydromet, Moscow, 2008).

  7. B. C. Ball, A. Scott, and J. P. Parker, “Field N2O, CO2, and CH4 fluxes in relation to tillage, compaction and soil quality in Scotland,” Soil Tillage Res. 53, 29–39 (1999).

    Article  Google Scholar 

  8. H. F. Birch, “Mineralization of plant nitrogen following alternate wet and dry conditions,” Plant Soil 20, 43–49 (1964). doi 10.1016/S0038-0717(97)00052-7

    Article  Google Scholar 

  9. W. Borken, K. Savage, E. Davidson, and S. Trumbore, “Effects of experimental drought on soil respiration and radiocarbon efflux from a temperate forest soil,” Global Change Biol. 12, 177–193 (2006). doi 10.1111/j.1365-2486.2005.01058.x

    Article  Google Scholar 

  10. W. Borken, Y. J. Xu, R. Brumme, and N. Lamersdorf, “A climate change scenario for carbon dioxide and dissolved organic carbon fluxes from a temperate forest soil: drought and rewetting effects,” Soil Sci. Soc. Am. J. 63, 1848–1855 (1999). doi 10.2136/sssaj1999.6361848x

    Article  Google Scholar 

  11. P. Casals, L. Lopez-Sangil, A. Carrara, C. Gimeno, and S. Nogués, “Autotrophic and heterotrophic contributions to short-term soil CO2 efflux following simulated summer precipitation pulses in a Mediterranean dehesa,” Global Biogeochem. Cycl. 25, GB3012 (2011). doi 10.1029/2010gb003973

    Article  Google Scholar 

  12. S. Castaldi, A. de Grandcourt, A. Rasile, U. Skiba, and R. Valentini, “CO2, CH4, and N2O fluxes from soil of a burned grassland in Central Africa,” Biogeosciences 7, 3459–3471 (2010). doi 10.5194/bg-7-3459-2010

    Article  Google Scholar 

  13. E. A. Davidson, L. V. Verchot, J. H. Cattânio, I. L. Ackerman, and J. Carvalho, “Effects of soil water content on soil respiration in forests and cattle pastures of eastern Amazonia,” Biogeochemistry 48, 53–69 (2000).

    Article  Google Scholar 

  14. K. Denef, J. Six, H. Bossuyt, S. D. Frey, E. T. Elliott, R. Merckx, and K. Paustian, “Influence of dry-wet cycles on the interrelationship between aggregate, particulate organic matter, and microbial activity dynamics,” Soil Biol. Biochem. 33, 1599–1611 (2001).

    Article  Google Scholar 

  15. N. Fierer and J. P. Schimel, “A proposed mechanism for the pulse in carbon dioxide production commonly observed following the rapid rewetting of a dry soil,” Soil Sci. Soc. Am. J. 67, 798–805 (2003).

    Article  Google Scholar 

  16. H. Göransson, D. L. Godbold, D. L. Jones, and J. Rousk, “Bacterial growth and respiration responses upon rewetting dry forest soils: impact of drought-legacy,” Soil Biol. Biochem. 57, 477–486 (2013). doi 10.1016/j.soilbio.2012.08.031

    Article  Google Scholar 

  17. P. J. Hanson, N. T. Edwards, C. T. Garten, and J. A. Andrews, “Separating root and soil microbial contributions to soil respiration: a review of methods and observations,” Biogeochemistry 48, 115–146 (2000).

    Article  Google Scholar 

  18. I. Inglima, G. Alberti, T. Bertolini, F. P. Vaccari, B. Gioli, B. Miglietta, M. F. Cotrufo, and A. Peressotti, “Precipitation pulses enhance respiration of Mediterranean ecosystems: the balance between organic and inorganic components of increased soil CO2 efflux,” Global Change Biol. 15 (5), 1289–1301 (2009). doi 10.1111/j.1365-2486.2008.01793.x

    Article  Google Scholar 

  19. P. Iovieno and E. Bååth, “Effect of drying and rewetting on bacterial growth rates in soil,” FEMS Microbiol. Ecol. 65, 400–407 (2008). doi doi 10.1111/j.1574-6941.2008.00524.x

    Article  Google Scholar 

  20. P. G. Jarvis, A. Rey, C. Petsikos, M. Rayment, J. S. Pereira, J. Banza, J. S. David, F. Miglietta, and R. Valentini, “Drying and wetting of soils stimulates decomposition and carbon dioxide emission: the “Birch Effect,” Tree Physiol. 27, 929–940 (2007). doi 10.1007/s11104-013-1728-7

    Article  Google Scholar 

  21. A. Jentsch, J. Kreyling, and C. Beierkuhnlein, “A new generation of climate-change experiments: events, not trends,” Front. Ecol. Environ. 5, 365–374 (2007).

    Article  Google Scholar 

  22. O. Joos, F. Hagedorn, A. Heim, A. K. Gilgen, M.W. I. Schmidt, R. T. W. Siegwolf, and N. Buchmann, “Summer drought reduces total and litterderived soil CO2 effluxes in temperate grassland—clues from a 13C litter addition experiment,” Biogeosciences 7, 1031–1041 (2010). doi 10.5194/bg-7-1031-2010

    Article  Google Scholar 

  23. D. V. Karelin, S. V. Goryachkin, A. V. Kudikov, V. O. Lopes de Gerenu, V. N. Lunin, A. V. Dolgikh, and D. I. Lyuri, “Changes in carbon pool and CO2 emission in the course of postagrogenic succession on gray soils (Luvic Phaeozems) in European Russia,” Eurasian Soil Sci. 50, 559–572 (2017). doi 10.1134/S1064229317050076

    Article  Google Scholar 

  24. D. V. Karelin, D. I. Lyuri, S. V. Goryachkin, V. N. Lunin, and A. V. Kudikov, “Changes in the carbon dioxide emission from soils in the course of postagrogenic succession in the chernozems forest-steppe,” Eurasian Soil Sci. 48, 1229–1241 (2015). doi 10.1134/S1064229315110095

    Article  Google Scholar 

  25. A. Kessavalou, J. W. Doran, A. R. Mosier, and R. A. Drijber, “Greenhouse gas fluxes following tillage and wetting in a wheat fallow cropping system,” J. Environ. Qual. 27, 1105–1116 (1998). doi 10.2134/jeq1998.00472425002700050016x

    Article  Google Scholar 

  26. D.-G. Kim, R. Vargas, B. Bond-Lamberty, and M. R. Turetsky, “Effects of soil rewetting and thawing on soil gas fluxes: a review of current literature and suggestions for future research,” Biogeosciences 9, 2459–2483 (2012). doi 10.5194/bg-9-2459-2012

    Article  Google Scholar 

  27. D.-G. Kim, S. Mu, S. Kang, and D. Lee, “Factors controlling soil CO2 effluxes and the effects of rewetting on effluxes in adjacent deciduous, coniferous, and mixed forests in Korea,” Soil Biol. Biochem. 42, 576–585 (2010). doi 10.1016/j.soilbio.2009.12.005

    Article  Google Scholar 

  28. M. Kirschbaum, “The temperature dependence of soil organic matter decomposition, and the effect of global warming on soil organic C storage,” Soil Biol. Biochem. 27, 753–760 (1995).

    Article  Google Scholar 

  29. V. N. Kudeyarov and I. N. Kurganova, “Respiration of Russian soils: database analysis, long-term monitoring, and general estimates,” Eurasian Soil Sci. 38, 983–992 (2005).

    Google Scholar 

  30. I. Kurganova, V. Lopes de Gerenyu, I. Savin, T. Myakshina, D. Sapronov, and V. Kudeyarov, “Response of carbon cycle to enhancement of climate aridity in various ecosystems of Central Russia,” in Proceedings of the 1st Pan-Eurasian Experiment (PEEX) Conference and the 5th PEEX Meeting “Report Series in Aerosol Science” (Bergen, 2015), Vol. 163, pp. 222–229.

    Google Scholar 

  31. I. N. Kurganova, V. O. Lopes de Gerenyu, T. N. Myakshina, D. V. Sapronov, and V. N. Kudeyarov, “CO2 emission from soils of various ecosystems of the Southern Taiga Zone: Data analysis of continuous 12-year monitoring,” Dokl. Biol. Sci. 436, 56–58 (2011). doi 10.1134/S0012496611010182

    Article  Google Scholar 

  32. I. N. Kurganova, V. O. Lopes de Gerenyu, A. S. Petrov, T. N. Myakshina, D. V. Sapronov, V. A. Ableeva, and V. N. Kudeyarov, “Effect of the observed climate changes and extreme weather phenomena on the emission component of the carbon cycle in different ecosystems of the southern taiga zone,” Dokl. Biol. Sci. 441, 412–416 (2011). doi 10.1134/S0012496611060214

    Article  Google Scholar 

  33. I. N. Kurganova, V. O. Lopes de Gerenyu, L. N. Rozanova, D. V. Sapronov, T. N. Myakshina, and V. N. Kudeyarov, “Annual and seasonal CO2 fluxes from Russian southern taiga soils,” Tellus B 55, 338–344 (2003).

    Article  Google Scholar 

  34. I. N. Kurganova, L. N. Rozanova, T. N. Myakshina, and V. N. Kudeyarov, “Monitoring of CO2 emission from soils of different ecosystems in Southern part of Moscow region: data base analyses of long-term field observations,” Eurasian Soil Sci. 37, 74–78 (2004).

    Google Scholar 

  35. A. A. Larionova, I. N. Kurganova, V. O. Lopes de Gerenyu, B. N. Zolotareva, I. V. Yevdokimov, and V. N. Kudeyarov, “Carbon dioxide emissions from agrogray soils under climate changes,” Eurasian Soil Sci. 43, 168–176 (2010). doi 10.1134/S1064229310020067

    Article  Google Scholar 

  36. A. A. Larionova, D. V. Sapronov, V. O. Lopez de Gerenyu, L.G. Kuznetsova, and V. N. Kudeyarov, “Contribution of plant root respiration to the CO2 emission from soil,” Eurasian Soil Sci. 39, 1127–1135 (2006).

    Article  Google Scholar 

  37. X. Lee, H. J. Wu, J. Sigler, C. Oishi, and T. Siccama, “Rapid and transient response of soil respiration to rain,” Global Change Biol. 10, 1017–1026 (2004). doi 10.1111/j.1365-2486.2004.00787.x

    Article  Google Scholar 

  38. V. O. Lopes de Gerenyu, I. N. Kurganova, L. N. Rozanova, and V. N. Kudeyarov, “Annual emission of carbon dioxide from soils of the southern taiga zone of Russia,” Eurasian Soil Sci. 34, 931–944 (2001).

    Google Scholar 

  39. V. O. Lopes de Gerenyu, I. N. Kurganova, L. N. Rozanova, and V. N. Kudeyarov, “Effect of temperature and moisture content on CO2 evolution rate of cultivated Phaeozems: analyses of long-term field experiment,” Plant, Soil Environ. 51 (5), 213–219 (2005).

    Article  Google Scholar 

  40. J. Luan, S. Liu, J. Wang, X. Zhu, and Z. Shi, “Rhizospheric and heterotrophic respiration of a warm-temperate oak chronosequence in China,” Soil Biol. Biochem. 43 (3), 503–512 (2011).

    Article  Google Scholar 

  41. A. Meisner, A. Leizeaga, J. Rousk, and E. Bååth, “Partial drying accelerates bacterial growth recovery to rewetting,” Soil Biol. Biochem. 112, 269–276 (2017). doi 10.1016/j.soilbio.2017.05.016

    Article  Google Scholar 

  42. F. E. Moyano, S. Manzoni, and C. Chenu, “Responses of soil heterotrophic respiration to moisture availability: an exploration of processes and models,” Soil Biol. Biochem. 59, 72–85 (2013).

    Article  Google Scholar 

  43. J. Muhr and W. Borken, “Delayed recovery of soil respiration after wetting of dry soil further reduces C losses from a Norway spruce forest soil,” J. Geophys. Res.: Biogeosci. 114, G04023 (2009). doi 10.1029/2009jg000998

    Article  Google Scholar 

  44. J. Muhr, J. Franke, and W. Borken, “Drying-rewetting events reduce C and N losses from a Norway spruce forest floor,” Soil Biol. Biochem. 42, 1303–1312 (2010). doi 10.1016/j.soilbio.2010.03.024

    Article  Google Scholar 

  45. J. S. Pereira, J. A. Mateus, L. M. Aires, G. Pita, C. Pio, J. S. David, V. Andrade, J. Banza, T. S. David, T. A. Paço, and A. Rodrigues, “Net ecosystem carbon exchange in three contrasting Mediterranean ecosystems. The effect of drought,” Biogeosci. Discuss. 4, 1703–1723 (2007). doi 10.5194/bg-4-791-2007

    Article  Google Scholar 

  46. M. Reichstein, M. Bahn, P. Ciais, D. Frank, M. D. Mahecha, S. I. Seneviratne, J. Zscheischler, C. Beer, N. Buchmann, D. C. Frank, D. Papale, A. Rammig, P. Smith, K. Thonicke, M. van der Velde, et al., “Climate extremes and the carbon cycle,” Nature 500, 287–295 (2013). doi 10.1038/nature12350

    Article  Google Scholar 

  47. P. Rochette, R. L. Desjardins, and E. Pattey, “Spatial and temporal variability of soil respiration in agricultural fields,” Can. J. Soil Sci. 71, 189–196 (1991). doi 10.4141/cjss91-018

    Article  Google Scholar 

  48. Second Assessment Report on Climate Change and its Consequences in the Russian Federation (General Summary) (Roshydromet, Moscow, 2014).

  49. R. A. Sponseller and S. G. Fisher, “The influence of drainage networks on patterns of soil respiration in a desert catchment,” Ecology 89, 1089–1100 (2008).

    Article  Google Scholar 

  50. S. Unger, C. Maguas, J. S. Pereira, T. S. Davidd, and C. Werner, “The influence of precipitation pulses on soil respiration—assessing the “Birch effect” by stable carbon isotopes,” Soil Biol. Biochem. 42, 1800–1810 (2010).

    Article  Google Scholar 

  51. L. K. Xu, D. D. Baldocchi, and J. W. Tang, “How soil moisture, rain pulses, and growth alter the response of ecosystem respiration to temperature,” Global Biogeochem. Cycles 18, GB4002 (2004). doi 10.1029/2004GB002281

    Google Scholar 

  52. I. V. Yevdokimov, A. A. Larionova, M. Schmitt, V. O. Lopes de Gerenyu, and M. Bahn, “Determination of root and microbial contributions to the CO2 emission from soil by the substrate-induced respiration method,” Eurasian Soil Sci. 43, 321–327 (2010).

    Article  Google Scholar 

  53. I. V. Yevdokimov, A. A. Larionova, M. Schmitt, V. O. Lopes de Gerenyu, and M. Bahn, “Experimental assessment of the contribution of plant root respiration to the emission of carbon dioxide from the soil,” Eurasian Soil Sci. 43, 1373–1381 (2010). doi 10.1134/S1064229310120070

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. O. Lopes de Gerenyu.

Additional information

Original Russian Text © V.O. Lopes de Gerenyu, I.N. Kurganova, D.A. Khoroshaev, 2018, published in Pochvovedenie, 2018, No. 10, pp. 1244–1258.

Supplementary materials are available for this article at 10.1134/S1064229318100034 and are accessible for authorized users.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lopes de Gerenyu, V.O., Kurganova, I.N. & Khoroshaev, D.A. The Effect of Contrasting Moistening Regimes on CO2 Emission from the Gray Forest Soil under a Grass Vegetation and Bare Fallow. Eurasian Soil Sc. 51, 1200–1213 (2018). https://doi.org/10.1134/S1064229318100034

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229318100034

Keywords

Navigation