Skip to main content
Log in

Compositions of n-Alkanes and n-Methyl Ketones in Soils of the Forest-Park Zone of Moscow

  • Soil Chemistry
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

The seasonal changes in the contents and compositions of n-alkanes and n-methyl ketones have been studied in typical soddy-podzolic soils (Albic Retisols (Ochric)) under lime forests in the Losiny Ostrov National Park, Moscow. In the humus horizons, the reserves (about 370 mg/m2) of odd n-alkanes with the chain length of C25–C35—the biomarkers of terrestrial vegetation—are 4–5 times below their amount entering with the leaf falloff in autumn. A noticeable contribution of microbial biomass hydrocarbons to the lipid fraction in the AY and AYel horizons manifests itself in the increased fraction of odd and medium-chain (<C25) homologues (OEP = 4–6, LSR = 5–7) in the spectrum of n-alkanes. The lowest content of methyl ketones and odd n-alkanes was observed immediately after the winter period (OEP = 22, A/K = 21–170). In the EL and BT horizons, the n-alkane fraction of organic matter and the relative content of high molecularweight n-alkanes more resistant to microbial destruction (C33, C35) increases by 3–4 times in comparison with that in the abovelying horizons, and the type of distribution of n-alkanes by the carbon chain length changes: the dominance of odd homologues is absent; in the EL horizon, OEP = 1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. P. Breus, A. A. Mishchenko, S. A. Nekludov, V. A. Breus, and V. V. Gorbachuk, “Sorption of hydrocarbons by leached chernozem,” Eurasian Soil Sci. 36, 291–300 (2003).

    Google Scholar 

  2. B. A. Byzov, Zoomicrobial Interactions in Soil (GEOS, Moscow, 2005) [in Russian].

    Google Scholar 

  3. A. N. Gennadiev, Y. I. Pikovskii, S. S. Chernyanskii, T. A. Alekseeva, and R. G. Kovach, “Forms of polycyclic aromatic hydrocarbons and factors of their accumulations in soils affected by technogenic pollution (Moscow oblast),” Eurasian Soil Sci. 37, 697–709 (2004).

    Google Scholar 

  4. V. S. Guzev and S. V. Levin, “Prospects of eco-microbiological assessment of the state of soils under anthropogenic impact,” Pochvovedenie, No. 9, 50–62 (1991).

    Google Scholar 

  5. L. L. Shishov, V. D. Tonkonogov, I. I. Lebedeva, and M. I. Gerasimova, Classification and Diagnostic System of Russian Soils (Oikumena, Smolensk, 2004) [in Russian].

    Google Scholar 

  6. R. T. Bush and F. A. McInerney, “Leaf-wax n-alkane distributions in and across modern plants: implications for paleoecology and chemotaxonomy,” Geochim. Cosmochim. Acta 117, 161–179 (2013). doi 10.1016/j.gca.2013.04.016

    Article  Google Scholar 

  7. J. Chikaraishi, H. Naraoka, and S. R. Poulson, “Carbon and hydrogen isotopic fractionation during lipid biosynthesis in a higher plant (Cryptomeria japonica),” Phytochemistry 65, 323–330 (2004). doi 10.1016/j.phytochem. 2003.12.003

    Article  Google Scholar 

  8. A. Colina-Tejada, A. Ambles, and P. Jambu, “Nature and origin of lipids shed into the soil by rainwater leaching a forest cover of Pinus maritime sp.,” Eur. J. Soil Sci. 45, 637–643 (1996).

    Article  Google Scholar 

  9. P. A. Cranwell, “Diagenesis of free and bound lipids in terrestrial detritus deposited in lacustrine sediment,” Org. Geochem. 3, 79–89 (1981). 0146-6380(81)90002-4

    Article  Google Scholar 

  10. G. Eglington and G. A. Logan, “Molecular preservation,” Philos. Trans. R. Soc., B 333, 315–328 (1991).

    Article  Google Scholar 

  11. K. J. Ficken, B. Li, D. L. Swain, and G. Eglinton, “An n-alkane proxy for the sedimentary input of submerged/floating freshwater aquatic macrophytes,” Org. Geochem. 31, 745–749 (2000). S0146-6380(00)00081-4

    Article  Google Scholar 

  12. M. Griepentrog, S. Bode, P. Boeckx, and G. L. B. Wiesenberg, “The fate of plant wax lipids in a model forest ecosystem under elevated CO2 concentration and increased nitrogen deposition,” Org. Geochem. 98, 131–140 (2016). https://doi.org/10.1016/j.orggeochem.2016.05.005.

    Article  Google Scholar 

  13. X. Huang, C. Wang, J. Zhang, G. L. B. Wiesenberg, Z. Zhang, and S. Xie, “Comparison of free lipid compositions between roots and leaves of plants in the Dajiuhu Peatland, central China,” Geochem. J. 45, 365–373 (2011).

    Article  Google Scholar 

  14. IUSS Working Group WRB, World Reference Base for Soil Resources 2014, Update 2015. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps, World Soil Resources Reports No. 106 (Food and Agriculture Organization, Rome, 2015).

    Google Scholar 

  15. B. Jansen, N. S. Hausmann, F. H. Tonneijck, J.M. Verstraten, and P. de Vooght, “Characteristic straight-chain lipid ratios as a quick method to assess past forest-Páramo transitions in the Ecuadorian Andes,” Palaeogeogr., Palaeoclimatol., Palaeoecol. 262, 129–139 (2008). doi 10.1016/j.palaeo.2008.02.007

    Article  Google Scholar 

  16. B. Jansen and K. G. J. Nierop, “Methyl ketones in high altitude Ecuadorian Andosols confirm excellent conservation of plant-specific n-alkanes patterns,” Org. Geochem. 40, 61–69 (2009).

    Article  Google Scholar 

  17. R. Jetter, L. Kunst, and A. L. Samuels, “Composition of plant cuticular waxes,” in Biology of Plant Cuticle (Blackwell, Oxford, 2006).

    Google Scholar 

  18. J. L. Harwood and N. J. Russel, Lipids in Plants and Microbes (George Allen & Unnin, London, 1984).

    Book  Google Scholar 

  19. S. U. Khan and M. Schnitzer, “The retention of hydrophobic organic compounds by humic acid,” Geochim. Cosmochim. Acta 36, 745–754 (1972). doi 10.1016/0016-7037(72)90085-3

    Article  Google Scholar 

  20. M. Kleber, K. Eusterhues, M. Keiluweit, C. Mikutta, R. Mikutta, and P. S. Nico, “Mineral-organic associations: formation, properties, and relevance in soil environments,” Adv. Agron. 130, 1–140 (2015). doi 10.1016/bs.agron.2014.10.005

    Article  Google Scholar 

  21. I. Kogel-Knaber, “The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter,” Soil Biol. Biochem. 34, 139–162 (2002). doi 10.1016/S0038-0717(01)00158-4

    Article  Google Scholar 

  22. N. Ladygina, E. G. Dedyukhina, and M. B. Vainshtein, “A review on microbial synthesis of hydrocarbons,” Process. Biochem. 41, 1001–1004 (2006). doi 10.1016/j.procbio.2005.12.007

    Article  Google Scholar 

  23. E. Lichtfouse, C. Chenu, F. Baudin, C. Leblond, M. Da Silva, F. Behar, S. Derenne, C. Largeau, P. Wehrung, and P. Albrecht, “A novel pathway of soil organic matter formation by selective preservation of resistant straight-chain biopolymers: chemical and isotope evidence,” Org. Geochem. 28, 411–415 (1998).

    Article  Google Scholar 

  24. K. Lehtonen and M. Ketola, “Solvent-extractable lipids of Sphagnum, Carex and Carex–Bryales peats: content and compositional features vs peat humification,” Org. Geochem. 20 (3), 363–380 (1993). https://doi.org/10.1016/0146-6380(93)90126-V.

    Article  Google Scholar 

  25. F. Makeschin, “Earthworms (Lumbricidae: Oligochaeta): important promoters of soil development and soil fertility,” in Fauna in Soil Ecosystems: Recycling Processes, Nutrient Fluxes, and Agricultural Production, Ed. G. Benckiser (CRC Press, Boca Raton, 1997), pp. 173–223.

    Google Scholar 

  26. S. Mambelli, J. A. Bird, G. Gleixne, T. E. Dawson, and M. S. Torn, “Relative contribution of foliar and fine root pine litter to the molecular composition of soil organic matter after in situ degradation,” Org. Geochem. 42, 1099–1108 (2011). doi 10.1016/j.orggeochem. 2011.06.008

    Google Scholar 

  27. J. N. Nichols and J. Huang, “C23–C31 n-alkan-2-ones are biomarkers for the genus Sphagnum in fresh-water peatlands,” Org. Geochem. 38, 1972–1976 (2007). doi 10.1016/j.orggeochem.2007.07.002

    Article  Google Scholar 

  28. C. Norris, J. Dungai, A. Joynes, and S. Quideau, “Biomarkers of novel ecosystem development in boreal forest soils,” Org. Geochem. 64, 9–18 (2013). doi 10.1016/j.orggeochem.2013.08.014

    Article  Google Scholar 

  29. E. Piasentier, S. Bovolenta, and F. Malossini, “The n-alkane concentrations in buds and leaves of browsed broad leaf trees,” J. Agric. Sci. 135, 311–320 (2000). doi 10.1016/j.gca.2010.08.033

    Article  Google Scholar 

  30. D. Sachse, G. Gleixner, H. Wilkes, and A. Kahmen, “Leaf wax n-alkane δD value of field grown barely reflect leaf water δD values at the time of leaf formation,” Geochim. Cosmochim. Acta 74, 6741–6750 (2008).

    Article  Google Scholar 

  31. S. N. Singh, Microbial Degradation of Xenobiotics (Springer-Verlag, Berlin, 2012).

    Book  Google Scholar 

  32. B. J. Tipple, M. A. Berke, C. E. Doman, S. Khachaturyan, and J. R. Ehleringer, “Leaf-wax n-alkanes record the plant-water environment at leaf flush,” Proc. Natl. Acad. Sci. 110, 2659–2664 (2013).

    Article  Google Scholar 

  33. G. L. B. Wiesenberg, L. Schwark, and M. W. I. Schmidt, “Improved automated extraction and separation procedure for soil lipid analyses,” Eur. J. Soil Sci. 55, 349–356 (2004).

    Article  Google Scholar 

  34. M. B. Wilhelm, A. F. Davila, J. L. Eigenbrode, M. N. Parenteau, L. L. Jahnke, X. L. Liu, R. E. Summons, J. J. Wray, B. N. Stamos, S. S. O’Reilly, and A. Williams, “Xeropreservation of functionalized lipid biomarkers in hyperarid soils in the Atacama Desert,” Org. Geochem. 103, 97–104 (2017). doi 10.1016/j.orggeochem. 2016.10.015

    Article  Google Scholar 

  35. M. Zech, N. Pedentchouk, S. B. Markovic, and B. Glaser, “Effect of leaf litter degradation and seasonality on D/H isotope ratios of n-alkane biomarkers,” Geochim. Cosmochim. Acta 75, 4917–4928 (2011). doi 10.1016/j.gca.2011.06.006

    Article  Google Scholar 

  36. M. Zech, S. Rass, B. Buggle, M. Loscher, and L. Zoller, “Reconstruction of the late Quaternary paleoenviroments of Nussloch loess paleosol sequence, Germany, using n-alkane biomarkers,” Quat. Res. 78, 226–235 (2012). j.yqres.2012.05.006

    Article  Google Scholar 

  37. M. Xia, A. F. Talhelm, and K. S. Pregitzer, “Fine roots are the dominant source of recalcitrant plant litter in sugar maple-dominated northern hardwood forests,” New Phytol. 208, 715–726 (2015).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. A. Zavgorodnyaya.

Additional information

Original Russian Text © N.A. Anokhina, V.V. Demin, Yu.A. Zavgorodnyaya, 2018, published in Pochvovedenie, 2018, No. 6, pp. 683–692.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anokhina, N.A., Demin, V.V. & Zavgorodnyaya, Y.A. Compositions of n-Alkanes and n-Methyl Ketones in Soils of the Forest-Park Zone of Moscow. Eurasian Soil Sc. 51, 637–646 (2018). https://doi.org/10.1134/S1064229318060030

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229318060030

Keywords

Navigation