Skip to main content
Log in

Transformation Features of Soils on Electric Substations due to the Leakage of Polychlorinated Biphenyls

  • Degradation, Remediation, and Conservation of Soils
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

Results of soil-geochemical studies performed at the electric power substations of Belarus equipped with capacitors filled with polychlorinated biphenyls (PCBs) are presented. Formation features of technogenic horizons in the original sandy soddy-podzolic soils (Lamillic Albic Arenosols (Ochric)) caused by the leakage of PCBs and repeated fillings of soil are shown. Signs of visually detectable PCB penetration into the soil profile confirmed by the chemical-analytical determination of PCBs are described. Heterogeneity of soil profile due to local anomalies of hazardous pollutants and transformation of soil chemical properties is shown. An increase in acidity at the sites of PCB leakage and in the contents of salt components is confirmed. Transformation of the ion composition of water extracts from soils due to the dominance of chloride ions, which can be due to the degradation of PCBs, is shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. D. Anan’eva, F. I. Khakimov, N. F. Deeva, and E. A. Sus’yan, “The influence of polychlorinated biphenyls on the microbial biomass and respiration in gray forest soil,” Eurasian Soil Sci. 38, 770–775 (2005).

    Google Scholar 

  2. G. K. Vasilyeva and E. R. Strijakova, “Bioremediation of soils and sediments contaminated by polychlorinated biphenyls,” Microbiology (Moscow) 76, 639–653 (2007). doi 10.1134/S002626170706001X

    Article  Google Scholar 

  3. A. N. Gennadiev, N. P. Solntseva, and M. I. Gerasimova, “Principles of grouping and nomenclature of technogenically transformed soils,” Pochvovedenie, No. 2, 49–60 (1992).

    Google Scholar 

  4. Urban Environment: Geoecological Aspects, Ed. by V. S. Khomich, (Belarusskaya Navuka, Minsk, 2012) [in Russian].

    Google Scholar 

  5. L. L. Shishov, V. D. Tonkonogov, I. I. Lebedeva, and M. I. Gerasimova, Classification and Diagnostic System of Russian Soils (Oikumena, Smolensk, 2004) [in Russian].

    Google Scholar 

  6. T. I. Kukharchik, S. V. Kakareka, V. S. Khomich, M. I. Kozyrenko, P. V. Kurman, T. L. Lapko, and D. Yu. Gorodetskii, “Soil pollution by polychlorinated biphenyls in the local impact zones and remediation methods,” Prirodopol’zovanie, No. 18, 36–44 (2010).

    Google Scholar 

  7. T. I. Kukharchik, S. V. Kakareka, V. S. Khomich, P. V. Kurman, and E. N. Voropai, “Polychlorinated biphenyls in soils of Belarus: sources, contamination levels, and problems of study,” Eurasian Soil Sci. 40, 485–492 (2007). doi 10.1134/S1064229307050031

    Article  Google Scholar 

  8. N. N. Petukhova, Soil Geochemistry of Belorussian SSR (Nauka i Tekhnika, Minsk, 1987) [in Russian].

    Google Scholar 

  9. Field Diagnostics of Belarusian Soils: Practical Manual, Ed. by G. S. Tsytron (Minsk, 2011) [in Russian].

    Google Scholar 

  10. T. V. Prokofyeva, I. A. Martynenko, and F. A. Ivannikov, “Classification of Moscow soils and parent materials and its possible inclusion in the classification system of Russian soils,” Eurasian Soil Sci. 44, 561–571 (2011). doi 10.1134/S1064229311050127

    Article  Google Scholar 

  11. T. V. Prokof’eva, M. I. Gerasimova, O. S. Bezuglova, K. A. Bakhmatova, A. A. Gol’eva, S. N. Gorbov, E. A. Zharikova, N. N. Matinyan, E. N. Nakvasina, and N. E. Sivtseva, “Inclusion of soils and soil-like bodies of urban territories into the Russian soil classification system,” Eurasian Soil Sci. 47, 959–967 (2014). doi 10.1134/S1064229314100093

    Article  Google Scholar 

  12. Handbook on Electrotechnical Materials, Ed. by Yu. V. Koritskii, (Energoatomizdat, Moscow, 1986), Vol. 1.

    Google Scholar 

  13. F. I. Khakimov, N. F. Deeva, and A. O. Il’ina, “Urban industrial soils: transformation and pollution,” Ekol. Noosferol. 17 (1–2), 24–40 (2006).

    Google Scholar 

  14. Ecogeochemistry of Urban Landscapes, Ed. by N. S. Kasimov (Moscow State Univ., Moscow, 1995) [in Russian].

    Google Scholar 

  15. S.-L. Badea, M. Mustafa, S. Lundstedt, and M. Tysklind, “Leachability and desorption of PCBs from soil and their dependency on pH and dissolved organic matter,” Sci. Total Environ. 499, 220–227 (2014). doi 10.1016/j.scitotenv.2014.08.031

    Article  Google Scholar 

  16. K. Breivik, A. Sweetman, J. M. Pacyna, and K. C. Jones, “Towards a global historical emission inventory for selected PCB congeners—a mass balance approach. 1. Global production and consumption,” Sci. Total Environ. 290, 181–198 (2002).

    Article  Google Scholar 

  17. G. Fan, Y. Wang, G. Fang, X. Zhu, and D. Zhou, “Review of chemical and electrokinetic remediation of PCBs contaminated soils and sediments,” Environ. Sci.: Process. Impacts 18, 1140–1156 (2016). doi 10.1039/C6EM00320F

    Google Scholar 

  18. H. I. Gomes, C. Dias-Ferreira, L. M. Ottosen, and A. B. Ribeiro, “Electroremediation of PCB contaminated soil combined with iron nanoparticles: effect of the soil type,” Chemosphere 131, 157–163 (2015). doi 10.1016/j.chemosphere.2015.03.007

    Article  Google Scholar 

  19. H. I. Gomes, C. Dias-Ferreira, and A. B. Ribeiro, “Overview of in situ and ex situ remediation technologies for PCB-contaminated soils and sediments and obstacles for full-scale application,” Sci. Total Environ. 445–446, 237–260 (2013). doi 10.1016/j.scitotenv.2012.11.098

    Article  Google Scholar 

  20. A. Gumanova, G. Gilca, and N. Orlova, “The fate of persistent organic pollutants (POPs) in the environment,” in The Fate of Persistent Organic Pollutants in the Environment, Ed. by E. Mehmetli and B. Koumanova (Springer-Verlag, New York, 2008), pp. 161–171.

    Chapter  Google Scholar 

  21. A. Ido, M. Niikawa, S. Ishihara, Y. Sawama, T. Nakanishi, Y. Monguchi, H. Sajiki, and H. Nagase, “Practical remediation of the PCB-contaminated soils,” J. Environ. Health Sci. Eng. 13 (9), 2–11 (2015). doi 10.1186/s40201-015-0158-2

    Google Scholar 

  22. Implementation plan of the republic of Kazakhstan on the obligations under the Stockholm convention on persistent organic pollutants for 2015–2018, Astana, 2014. http://chm.pops.int/Implementation/NIPs/NIPTransmission/tabid/253/Default.aspx.

  23. V. Ivanov and E. Sandell, “Characterization of polychlorinated biphenyl isomers in Sovol and trichlorodiphenyl formulations by high-resolution gas chromatography with electron capture detection and highresolution gas chromatography-mass spectrometry techniques,” Environ. Sci. Technol. 26 (10), 2012–2017 (1992).

    Article  Google Scholar 

  24. W. A. Ockenden, K. Breivik, S. N. Meijer, E. Steinnes, A. J. Sweetmana, and K. C. Jones, “The global recycling of persistent organic pollutants is strongly retarded by soils,” Environ. Pollut. 121, 75–80 (2003).

    Article  Google Scholar 

  25. V. Rybnikova, M. Usman, and K. Hanna, “Removal of PCBs in contaminated soils by means of chemical reduction and advanced oxidation processes,” Environ. Sci. Pollut. Res. 23 (17), 17035–17048 (2016). https://haluniv-rennes1.archives-ouvertes.fr/hal-01376264.

    Article  Google Scholar 

  26. Toxicological Profile for Polychlorinated Biphenyls (PCBs) (Agency for Toxic Substances and Disease Registry, Atlanta, 2000).

  27. R. Weber, M. Tysklind, C. Gaus, P. Johnston, M. Forter, H. Hollert, H. Heinisch, I. Holoubek, M. Lloyd-Smith, S. Masunaga, P. Moccarelli, D. Santillo, N. Seike, R. Symons, J. P. M. Torres, et al., “Dioxin-and POP-contaminated sites—contemporary and future relevance and challenges,” Environ. Sci. Pollut. Res. 15, 363–393 (2008).

    Article  Google Scholar 

  28. IUSS Working Group WRB, World Reference Base for Soil Resources 2014, International Soil Classification System for Naming Soils and Creating Legends for Soil Maps, World Soil Resources Reports No. 106 (Food and Agriculture Organization, Rome, 2014).

    Google Scholar 

  29. X. Zhang, F. Li, T. Liu, C. Peng, D. Duan, and C. Xu, “The influence of polychlorinated biphenyls contamination on soil protein expression,” ISRN Soil Sci. 2013, Art. ID 126391 (2013). http://dx.doi.org/. doi 10.1155/2013/126391

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. I. Kukharchyk.

Additional information

Original Russian Text © T.I. Kukharchyk, M.I. Kazyrenka, T.L. Lapko, 2018, published in Pochvovedenie, 2018, No. 6, pp. 759–770.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kukharchyk, T.I., Kazyrenka, M.I. & Lapko, T.L. Transformation Features of Soils on Electric Substations due to the Leakage of Polychlorinated Biphenyls. Eurasian Soil Sc. 51, 720–730 (2018). https://doi.org/10.1134/S1064229318040105

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229318040105

Keywords

Navigation