Eurasian Soil Science

, Volume 51, Issue 4, pp 479–484 | Cite as

Mapping of Rill Erosion of Arable Soils Based on Unmanned Aerial Vehicles Survey

  • A. N. Kashtanov
  • Yu. I. Vernyuk
  • I. Yu. Savin
  • V. V. Shchepot’ev
  • P. A. Dokukin
  • D. V. Sharychev
  • K. A. Li
Degradation, Rehabilitation, and Conservation of Soils


Possibilities of using data obtained from unmanned aerial vehicles for detection and mapping of rill erosion on arable lands are analyzed. Identification and mapping of rill erosion was performed on a key plot with a predominance of arable gray forest soils (Greyzemic Phaeozems) under winter wheat in Tula oblast. This plot was surveyed from different heights and in different periods to determine the reliability of identification of rill erosion on the basis of automated procedures in a GIS. It was found that, despite changes in the pattern of rills during the warm season, only one survey during this season is sufficient for adequate assessment of the area of eroded soils. According to our data, the most reliable identification of rill erosion is based on the aerial survey from the height of 50 m above the soil surface. When the height of the flight is more than 200 m, erosional rills virtually escape identification. The efficiency of identification depends on the type of crops, their status, and time of the survey. The surveys of bare soil surface in periods with maximum possible interval from the previous rain or snowmelt season are most efficient. The results of our study can be used in the systems of remote sensing monitoring of erosional processes on arable fields. Application of multiand hyperspectral cameras can improve the efficiency of monitoring.


arable soils unmanned aerial vehicles mapping of soil properties soil erosion gray forest soils (Phaeozems) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. L. Andronikov, Aerospace Study of Soils (Kolos, Moscow, 1979) [in Russian].Google Scholar
  2. 2.
    I. D. Braude, Rational Use of Eroded Gray Forest Soils in Nonchernozem Area of RSFSR (Lesnaya Promyshlennost’, Moscow, 1976) [in Russian].Google Scholar
  3. 3.
    I. D. Braude, “The nature of spottiness of arable soils on slopes and their reclamation,” Pochvovedenie, No. 2, 89–96 (1991).Google Scholar
  4. 4.
    D. S. Bulgakov, Candidate’s Dissertation in Agriculture (Moscow, 1973).Google Scholar
  5. 5.
    I. E. Egorov, “Analysis of non-channel erosional network in Udmurtia,” Vestn. Udmurt. Univ., Ser. Biol. Nauki Zemle, No. 11, 93–102 (2006).Google Scholar
  6. 6.
    I. E. Egorov, “Field study of soil erosion,” Vestn. Udmurt. Univ., Ser. Biol. Nauki Zemle, No. 1, 157–170 (2009).Google Scholar
  7. 7.
    M. N. Zaslavskii, Erosion Science (Vysshaya Shkola, Moscow, 1983) [in Russian].Google Scholar
  8. 8.
    A. S. Izvekov, N. N. Zakharova, and V. V. Schepotiev, “Recovery of fertility and improvement of productivity of eroded agrogray soils in the nonchernozemic area,” Proceedings of the All-Russia Conference in Memoriam of Academician E.I. Ermakov (St. Petersburg, 2009), pp. 232–252.Google Scholar
  9. 9.
    A. S. Izvekov and V. V. Schepotiev, “Non-traditional approach to the agricultural use of eroded agrogray soils of slopes in the nonchernozemic area of Russia,” Agrofizika, No. 4 (8), 45–59 (2012).Google Scholar
  10. 10.
    A. N. Kashtanov and M. N. Zaslavskii, Soil-and Water-Protective Farming (Rossel’khozizdat, Moscow, 1984) [in Russian].Google Scholar
  11. 11.
    L. F. Litvin, Geography of Soil Erosion on Agricultural Lands of Russia (Akademkniga, Moscow, 2002) [in Russian].Google Scholar
  12. 12.
    E. I. Ryabov, Field Analysis of Real Losses of Soils under the Impact of Water and Wind Erosion (Stavropol, 1996) [in Russian].Google Scholar
  13. 13.
    E. I. Ryabov and P. V. Lyutyaev, RF Patent No. 2462692, Byull. Izobret., No. 27 (2012).Google Scholar
  14. 14.
    S. S. Sobolev, Development of Erosional Processes in the European Part of the Soviet Union and Their Control (Academy of Sciences of the USSR, Moscow, 1948) [in Russian].Google Scholar
  15. 15.
    I. Yu. Savin and E. Yu. Prudnikova, “Optimal period of satellite survey for mapping of arable soils,” Byull. Pochv. Inst. im. V.V. Dokuchaeva, No. 74, 66–77 (2014).Google Scholar
  16. 16.
    I. Yu. Savin, Yu. I. Verniuk, and I. Faraslis, “Possible use of unmanned aerial vehicles for operative monitoring of soil productivity,” Byull. Pochv. Inst. im. V.V. Dokuchaeva, No. 80, 95–105 (2015).Google Scholar
  17. 17.
    S. S. Sobolev, Soil Erosion Control and Improvement of Soil Fertility (Kolos, Moscow, 1961) [in Russian].Google Scholar
  18. 18.
    Yu. P. Sukhanovskii, V. V. Demidov, and G. Ollesh, “Model of the rill erosion of soils during snow melting,” in Soil Erosion (Dokuchaev Soil Science Inst., Moscow, 2007), pp. 176–188.Google Scholar
  19. 19.
    G. I. Shvebs, Theoretical Principles of Erosion Science (Vishcha Shkola, Kiev, 1981) [in Russian].Google Scholar
  20. 20.
    V. I. Shurikova, “Fertility parameters of eroded s gray forest oils in Tula oblast,” in Regional Models of Soil Fertility as the Basis for Improvement of Zonal Farming Systems (Dokuchaev Soil Science Inst., Moscow, 1988), pp. 51–57.Google Scholar
  21. 21.
    C. Alewell, K. Meusburger, M. Brodbeck, and D. Banninger, “Methods to describe and predict soil erosion in mountain regions,” Landscape Urban Plan. 88, 46–53 (2008).CrossRefGoogle Scholar
  22. 22.
    J. Bahrawi, M. Elhag, A. Aldhebiani, H. R. Galal, A. K. Hegazy, and E. Alghailani, “Soil erosion estimation using remote sensing techniques in Wadi Yalamlam Basin, Saudi Arabia,” Adv. Mater. Sci. Eng. 2016, Art. ID 9585962 (2016). doi 10.1155/2016/9585962Google Scholar
  23. 23.
    P. Bazzoffi, “Measurement of rill erosion through a new UAV–GIS methodology,” Ital. J. Agron. 10, 1–18 (2015). doi 10.4081/ija.2015.708CrossRefGoogle Scholar
  24. 24.
    J. de Vente, J. Poesen, G. Verstraeten, A. van Rompaey, and G. Govers, “Spatially distributed modeling of soil erosion and sediment yield at regional scales in Spain,” Global Planet. Change 60, 393–415 (2008). doi 10.1016/j.gloplacha.2007.05.00225CrossRefGoogle Scholar
  25. 25.
    A. Eltner, P. Baumgart, H. G. Maas, and D. Faust, “Multi-temporal UAV data for automatic measurement of rill and interrill erosion on loess soil,” Earth Surf. Process. Landforms 40, 741–775 (2014).CrossRefGoogle Scholar
  26. 26.
    B. E. Frazier and D. K. McCools, “Aerial photography to detect rill erosion,” Trans. ASAE 24 (5), 1168–1171 (1981). doi 10.13031/2013.34414CrossRefGoogle Scholar
  27. 27.
    S. K. Jain, P. Singh, and S. M. Seth, “Assessment of sedimentation in Bhakra Reservoir in the western Himalayan region using remotely sensed data,” Hydrol. Sci. J. 47 (2), 203–212 (2002).CrossRefGoogle Scholar
  28. 28.
    I. Z. Gitas, K. Douros, C. Minakou, G. N. Silleos, and K. G. Karydas, “Multi-temporal soil erosion risk assessment in N. Chalkidiki using a modified USLE raster model,” EARSeL eProc. 8, 40–52 (2009).Google Scholar
  29. 29.
    C. King, N. Baghdadi, V. Lecomte, and O. Cerdan, “The application of remote sensing data to monitoring and modeling of soil erosion,” Catena 62, 79–93 (2005).CrossRefGoogle Scholar
  30. 30.
    I. Kosmadakis, P. Tsardaklis, K. Ioannou, and G. Zaimes, “A novel fully automated soil erosion monitoring system,” Proceedings of the 17th International Conference on Information and Communication Technologies in Agriculture, Food and Environment (HAICTA 2015) (Kavala, 2015), pp. 80–84.Google Scholar
  31. 31.
    R. P. C. Morgan, Soil Erosion and Conservation (Blackwell, Oxford, 2005).Google Scholar
  32. 32.
    J. Siakeu and T. Oguchi, “Soil erosion analysis and modeling: a review,” Trans. Jpn. Geomorphol. 21 (4), 413–429 (2000).Google Scholar
  33. 33.
    V. Shinde, K. N. Tiwari, and M. Singh, “Prioritization of micro watersheds on the basis of soil erosion hazard using remote sensing and geographic information system,” Int. J. Water Res. Environ. Eng. 2 (3), 130–136 (2010).Google Scholar
  34. 34.
    A. Vrieling, S. M. De Jong, G. Sterk, and S. C. Rodrigues, “Timing of erosion and satellite data: a multi-resolution approach to soil erosion risk mapping,” Int. J. Appl. Earth Obs. Geoinf. 10, 267–281 (2008). doi 10.1016/j.jag.2007.10.009CrossRefGoogle Scholar
  35. 35.
    A. Vrieling, S. C. Rodrigues, H. Bartholomeus, and G. Sterk, “Automatic identification of erosion gullies with ASTER imagery in the Brazilian Cerrados,” Int. J. Remote Sens. 28 (12), 2723–2738 (2007).CrossRefGoogle Scholar
  36. 36.
    A. Vrieling, “Satellite remote sensing for water erosion assessment: a review,” Catena 65, 2–18 (2006).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. N. Kashtanov
    • 1
  • Yu. I. Vernyuk
    • 1
    • 2
  • I. Yu. Savin
    • 1
    • 2
  • V. V. Shchepot’ev
    • 1
  • P. A. Dokukin
    • 2
  • D. V. Sharychev
    • 2
  • K. A. Li
    • 2
  1. 1.Dokuchaev Soil Science InstituteMoscowRussia
  2. 2.Agrarian and Technological InstitutePeoples’ Friendship University of RussiaMoscowRussia

Personalised recommendations