Skip to main content
Log in

Effect of Palygorskite Clay, Fertilizers, and Lime on the Degradation of Oil Products in Oligotrophic Peat Soil under Laboratory Experimental Conditions

  • Degradation, Rehabilitation, and Conservation of Soils
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

The effect of native palygorskite clay and that modified with dodecyltrimethylammonium chloride on the degradation of oil products in an oligotrophic peat soil under complete flooding at the application of lime and mineral fertilizers has been studied under laboratory conditions. It has been shown that the incubation of oil-contaminated soil with unmodified clay and fertilizers at the application of lime under complete flooding with water affects the dynamics of pH and Eh and slows the development of reducing conditions compared to the use of clay without fertilizers. The addition of organoclay under similar conditions favors the formation of potential-determining system with a high redox capacity, which is capable of retaining the potential on a level of 100–200 mV at pH ∼ 7 for two months. It has been found that, under the experimental conditions, unmodified and modified clay, which has no toxic effect on the bacterial complex, does not increase the biodegradation efficiency of oil products in the oligotrophic peat soil compared to the experimental treatments without clay addition. Possible reasons for no positive effect of palygorskite clay on the biodegradation rate of oil products under experimental conditions have been analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. A. Avetov, N. K. Shvedchikova, and E. A. Shishkonakova, “Plants-phytomeliorants prospective for reclamation of disturbed wetlands in the Central Ob region,” in Biological Resources and Nature Management (Defis, Surgut, 2008), Vol. 11, pp. 241–251.

    Google Scholar 

  2. L. P. Voronina and V. A. Terekhova, Use of Phytotesting for Ecological Monitoring (Dobroe Slovo, Moscow, 2014) [in Russian].

    Google Scholar 

  3. A. V. Golovchenko, E. Yu. Tikhonova, and D. G. Zvyagintsev, “Abundance, biomass, structure, and activity of the microbial complexes of minerotrophic and ombrotrophic peatlands,” Microbiology (Moscow) 76, 711–719 (2007).

    Article  Google Scholar 

  4. V. N. Efimov, Peat Soils and Their Fertility (Agropromizdat, Leningrad, 1986) [in Russian].

    Google Scholar 

  5. S. A. Illarionov, Ecological Aspects of Remediation of Oil-Polluted Soils (Ural Branch, Russian Academy of Sciences, Yekaterinburg, 2004) [in Russian].

    Google Scholar 

  6. A. P. Krasavin and I. V. Kataeva, “Biotechnological restoration of soil fertility in difficult ecological conditions,” Proceedings of the International Conference “Biological Reclamation of Disturbed Lands” (Ural Branch, Russian Academy of Sciences, Yekaterinburg, 2003), pp. 231–238

    Google Scholar 

  7. Crystallographic and crystallochemical database of minerals and their structural analogs, 2016. http:// database.iem.ac.ru/mincryst/rus/.

  8. V. N. Kudeyarov, “Nitrogen cycle and nitrous oxide production,” Eurasian Soil Sci. 32, 892–901 (1999).

    Google Scholar 

  9. L. V. Lysak, T. G. Dobrovol’skaya, and I. N. Skvortsova, Evaluation of Bacterial Diversity of Soils and Identification of Soil Bacteria (MAKS Press, Moscow, 2003) [in Russian].

    Google Scholar 

  10. L. V. Lysak, E. V. Lapygina, I. A. Konova, and D. G. Zvyagintsev, “Definition of the physiological condition of bacteria in soil by means of luminescent dye L7012,” Biol. Bull. 36, 639–642 (2009).

    Article  Google Scholar 

  11. I. I. Lytkin, “Agroecological role of fertilizers and lime in agrocenoses of peat soils during their cultivation,” Agrokhimiya, No. 5, 17–26 (2007).

    Google Scholar 

  12. Manual on Soil Microbiology and Biochemistry, Ed. by D. G. Zvyagintsev (Moscow State Univ., Moscow, 1991) [in Russian].

  13. V. A. Myazin, Candidate’s Dissertation in Engineering (Apatity, 2014).

    Google Scholar 

  14. V. V. Nasedkin, N. M. Boeva, I. A. Garbuzova, M. V. Kovalchuk, and A. L. Vasiliev, “The crystal structure and chemistry of several palygorskite samples with different geneses,” Crystallogr. Rep. 54, 884–900 (2009).

    Article  Google Scholar 

  15. V. V. Nasedkin, K. V. Demidenok, N. M. Boeva, P. E. Belousov, and A. L. Vasil’ev, “Organoclays: production and main purpose,” Aktual’n. Innovatsionnye Issled. Nauka Prakt., No. 3, 1–19 (2012).

    Google Scholar 

  16. PND F 16.1;2.2.22-98: Measurement of Mass Fraction of Petroleum Products in Mineral, Organic, Organo-Mineral Soils and Bottom Sediments by IR Spectrometry (Moscow, 1998) [in Russian].

  17. V. I. Savich, “Soil fertility improvement by regulation of redox status,” Dokl. Vses. Akad. S-kh. Nauk im. V.I. Lenina, No. 6, 12–15 (1988).

    Google Scholar 

  18. L. A. Salanginas, A. N. Satubaldin, and A. V. Belogurova, “The effect of the application of siderate cultures for the biological reclamation of oil-polluted lands in the Urals and Western Siberia,” Proceedings of International Conference “Biological Recultivation of Disturbed Lands” (Yekaterinburg, 2003), pp. 427–434.

    Google Scholar 

  19. T. A. Sokolova, T. Ya. Trofimov, I. I. Tolpeshta, and T. Ya. Dronova, “Experimental study of the interaction between sphagnum peat and drilling mud,” Eurasian Soil Sci. 38, 324–332 (2005).

    Google Scholar 

  20. N. P. Solntseva, Oil Production and Geochemistry of Natural Landscapes (Moscow State Univ., Moscow, 1998) [in Russian].

    Google Scholar 

  21. Yu. I. Tarasevich and F. D. Ovcharenko, Adsorption on Clay Minerals (Naukova Dumka, Kiev, 1975) [in Russian].

    Google Scholar 

  22. V. A. Terekhova, O. S. Yakimenko, L. P. Voronina, and K. A. Kydralieva, Measurement of the Biological Activity of Humic Substances by Phytotesting (Fitoskan) (Dobroe Slovo, Moscow, 2014) [in Russian].

    Google Scholar 

  23. I. I. Tolpeshta, S. Ya. Trofimov, M. I. Erkenova, T. A. Sokolova, A. L. Stepanov, L. V. Lysak, and A. M. Lobanenkov, “Laboratory simulation of the successive aerobic and anaerobic degradation of oil products in oil-contaminated high-moor peat,” Eurasian Soil Sci. 48, 314–324 (2015).

    Article  Google Scholar 

  24. Physical and Chemical Analysis of Soils (Moscow State Univ., Moscow, 1980) [in Russian].

  25. N. Takeno, Atlas of Eh-pH Diagrams. Intercomparison of Thermodynamic Databases, Geological Survey of Japan Open File Report No. 419 (National Institute of Advanced Industrial Science, Technology Research Center for Deep Geological Environments, Tsukuba, 2005).

    Google Scholar 

  26. M. A. Baig and K. R. Tice, “Identification and distribution of palygorskite in a Petrocalcic Paleargid,” Geol. Bull. Univ. Peshawar 30, 107–117 (1997).

    Google Scholar 

  27. R. M. Barrer, “Shape-selective sorbents based on clay minerals: a review,” Clays Clay Miner. 37 (5), 385–395 (1989).

    Article  Google Scholar 

  28. Handbook of Clay Science, Ed. by F. Bergaya, B. K. G. Theng, and G. Lagaly (Elsevier, Amsterdam, 2006).

  29. H. L. Ehrlich, Geomicrobiology (Marcel Dekker, New York, 2002).

    Google Scholar 

  30. S. Froehner, E. C. Luz, and M. Maceno, “Enhanced biodegradation of naphthalene and anthracene by modified vermiculite mixed with soil,” Water Air Soil Pollut. 202, 169–177 (2009).

    Article  Google Scholar 

  31. S. Froehner, R. F. Martins, W. Furukawa, and M. R. Errera, “Water remediation by adsorption on phenol onto hydrophobic modified clay,” Water Air Soil Pollut. 199 (1), 107–113 (2009).

    Article  Google Scholar 

  32. H. He, Q. Zhou, W. N. Martens, T. J. Kloprogge, P. Yuan, Y. Xi, J. Zhu, and R. L. Frost, “Microstructure of HDMA+-modified montmorillonite and its influence on sorption characteristics,” Clays Clay Miner. 54 (6), 689–696 (2006).

    Article  Google Scholar 

  33. W. F. Jaynes and S. A. Boyd, “Hydrophobicity of siloxane surfaces in smectites as revealed by aromatic hydrocarbon adsorption from water,” Clays Clay Miner. 39 (4), 428–436 (1991).

    Article  Google Scholar 

  34. G. Lagaly, M. Gonzalez, and A. Weiss, “Problems in layer-charge determination on montmorillonites,” Clay Miner. 11, 173–187 (1976).

    Article  Google Scholar 

  35. G. Lagaly, M. Ogawa, and I. Dekany, “Clay mineral organic interaction, in Handbook of Clay Science, Ed. by F. Bergaya, B. K. G. Theng, and G. Lagaly (Elsevier, Amsterdam, 2006), Vol. 1, pp. 309–377.

    Chapter  Google Scholar 

  36. Z. Li, C. A. Willms, and K. Kniola, “Removal of anionic contaminants using surfactant-modified palygorskite and sepiolite,” Clays Clay Miner. 51 (4), 445–451 (2003).

    Article  Google Scholar 

  37. P. A. Lock and N. T. Skipper, “Computer simulation of the structure and dynamics of phenol in sodium montmorillonite hydrates,” Eur. J. Soil Sci. 58, 958–966 (2007).

    Article  Google Scholar 

  38. S. V. Mohan, T. Kisa, T. Ohkuma, R. A. Kanaly, and Y. Shimizu, “Bioremediation technologies for treatment of PAH-contaminated soil and strategies to enhance process efficiency,” Rev. Environ. Sci. Biotechnol. 5, 347–374 (2006).

    Article  Google Scholar 

  39. D. M. Moore and R. C. Reynolds, X-Ray Diffraction and the Identification and Analysis of Clay Minerals (Oxford University Press, Oxford, 1989).

    Google Scholar 

  40. S. Mueller, K. U. Totsche, and I. Koegel-Knabner, “Sorption of polycyclic aromatic hydrocarbons to mineral surfaces,” Eur. J. Soil Sci. 58, 918–931 (2007).

    Article  Google Scholar 

  41. Y. Park, G. A. Ayoko, and R. L. Frost, “Synthesis and characterization of organoclays using single alkyl chain cationic surfactants—applications for water treatment,” The 21st Australian Clay Minerals Conference, Extended Abstracts (Brisbane, 2010), pp. 91–92.

    Google Scholar 

  42. Y. Park, R. L. Frost, G. A. Ayoko, and D. L. Morgan, “Adsorption of p-nitrophenol on organoclays,” J. Therm. Anal. Calorim. 111, 41–47 (2013).

    Article  Google Scholar 

  43. R. R. Tiwari, K. C. Khilar, and U. Natarajan, “Synthesis and characterization of novel organo-montmorillonites,” Appl. Clay Sci. 38, 203–208 (2008).

    Article  Google Scholar 

  44. B. Sarkar, M. Megharaj, Y. Xi, and R. Naidu, “Surface charge characteristics of organo-palygorskites and adsorption of p-nitrophenol in flow-through reactor system,” Chem. Eng. J. 185–186, 35–43 (2012).

    Article  Google Scholar 

  45. B. Sarkar, Y. Xi, M. Megharaj, G. Krishnamurti, and R. Naidu, “Preparation and characterization of organopalygorskites and their application for p-nitrophenol adsorption,” The 21st Australian Clay Minerals Conference, Extended Abstracts (Brisbane, 2010), pp. 141–143.

    Google Scholar 

  46. H. Shariatmadarj, A. R. Mermut, and M. B. Benke, “Sorption of selected cationic and neutral organic molecules on palygorskite and sepiolite,” Clays Clay Miner. 47 (1), 44–53 (1999).

    Article  Google Scholar 

  47. A. D. Site, “Factors affecting sorption of organic compounds in natural sorbent/water systems and sorption coefficients for selected pollutants. A review,” J. Phys. Chem. Ref. Data 30 (1), 187–439 (2001).

    Article  Google Scholar 

  48. J. A. Smith, P. R. Jaffe, and C. T. Chlou, “Effect of ten quaternary ammonium cations on tetrachloromethane sorption to clay from water,” Environ. Sci. Technol. 24, 1167–1172 (1990).

    Article  Google Scholar 

  49. S. Suthersan, Remediation Engineering: Design Concepts (CRC, Boca Raton, Fl, 1999).

    Google Scholar 

  50. U. Tezel and S. G. Pavlostathis, “Quaternary ammonium disinfectants: microbial adaptation, degradation and ecology,” Curr. Opin. Biotechnol. 33, 296–304 (2015).

    Article  Google Scholar 

  51. U. Tezel, J. A. Pierson, and S. G. Pavlostathis, “Effect of polyelectrolytes and quaternary ammonium compounds on the anaerobic biological treatment of poultry processing wastewater,” Water Res. 41, 1334–1342 (2007).

    Article  Google Scholar 

  52. U. C. Ugochukwu, M. D. Jones, I. M. Head, D. A. C. Manning, and C. I. Fialips, “Biodegradation of crude oil saturated fraction supported on clays,” Biodegradation 25 (1), 153–165 (2014).

    Article  Google Scholar 

  53. U. C. Ugochukwu, M. D. Jones, I. M. Head, D. A. C. Manning, and C. I. Fialips, “Biodegradation and adsorption of crude oil hydrocarbons supported on “homoionic” montmorillonite clay minerals,” Appl. Clay Sci. 87, 81–86 (2014).

    Article  Google Scholar 

  54. U. C. Ugochukwu, D. A. C. Manning, and C. I. Fialips, “Microbial degradation of crude oil hydrocarbons on organoclay minerals,” J. Environ. Manage. 144 (1), 197–202 (2014).

    Article  Google Scholar 

  55. L. N. Warr, J. N. Perdrial, M.-C. Lett, A. Heinrich- Salmeron, and M. Khodja, “Clay mineral-enhanced bioremediation of marine oil pollution,” Appl. Clay Sci. 46, 337–345 (2009).

    Article  Google Scholar 

  56. S. C. Whalen, “Biogeochemistry of methane exchange between natural wetlands and the atmosphere,” Environ. Eng. Sci. 22 (1), 73–94 (2005).

    Article  Google Scholar 

  57. Y. Xi, M. Mallavarapu, and R. Naidu, “Adsorption of the herbicide 2,4-D on organo-palygorskite,” Appl. Clay Sci. 49, 255–261 (2010).

    Article  Google Scholar 

  58. J. Zhang, D. Cai, G. Zhang, C. Cai, C. Zhang, G. Qiu, K. Zheng, and Z. Wu, “Adsorption of methylene blue from aqueous solution onto multiparous palygorskite modified by ion beam bombardment: Effect of contact time, temperature, pH and ionic strength,” Appl. Clay Sci. 83–84, 137–143 (2013).

    Article  Google Scholar 

  59. L. Zhang, B. Zhang, T. Wu, D. Sun, and Y. Li, “Adsorption behavior and mechanism of chlorophenols on to organoclays in aqueous solution,” Colloids Surf., A 484, 118–129 (2015).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. I. Tolpeshta.

Additional information

Original Russian Text © I.I. Tolpeshta, M.I. Erkenova, 2018, published in Pochvovedenie, 2018, No. 2, pp. 229–242.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tolpeshta, I.I., Erkenova, M.I. Effect of Palygorskite Clay, Fertilizers, and Lime on the Degradation of Oil Products in Oligotrophic Peat Soil under Laboratory Experimental Conditions. Eurasian Soil Sc. 51, 229–240 (2018). https://doi.org/10.1134/S1064229318020126

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229318020126

Keywords

Navigation