Skip to main content

Modelling Thermal Diffusivity of Differently Textured Soils


A series of models has been proposed for estimating thermal diffusivity of soils at different water contents. Models have been trained on 49 soil samples with the texture range from sands to silty clays. The bulk density of the studied soils varied from 0.86 to 1.82 g/cm3; the organic carbon was between 0.05 and 6.49%; the physical clay ranged from 1 to 76%. The thermal diffusivity of undisturbed soil cores measured by the unsteady-state method varied from 0.78×10–7 m2/s for silty clay at the water content of 0.142 cm3/cm3 to 10.09 × 10–7 m2/s for sand at the water content of 0.138 cm3/cm3. Each experimental curve was described by the four-parameter function proposed earlier. Pedotransfer functions were then developed to estimate the parameters of the thermal diffusivity vs. water content function from data on soil texture, bulk density, and organic carbon. Models were tested on 32 samples not included in the training set. The root mean square errors of the best-performing models were 17–38%. The models using texture data performed better than the model using only data on soil bulk density and organic carbon.

This is a preview of subscription content, access via your institution.


  1. 1.

    T. A. Arkhangel’skaya, “Parameterization and mathematical modeling of the dependence of soil thermal diffusivity on the water content,” Eurasian Soil Sci. 42, 162–172 (2009).

    Article  Google Scholar 

  2. 2.

    T. A. Arhangelskaya, “Thermal diffusivity of gray forest soils in the Vladimir Opol’e region,” Eurasian Soil Sci. 37, 285–294 (2004).

    Google Scholar 

  3. 3.

    T. A. Arkhangel’skaya and A. A. Gvozdkova, “Thermal properties of organomineral mixtures with different sand content,” in Scientific Basis of Ecology, Melioration, and Aesthetics of the Landscapes (Moscow, 2010), pp. 294–299.

    Google Scholar 

  4. 4.

    T. A. Arkhangel’skaya, K. I. Luk’yashchenko, and P. I. Tikhonravova, “Thermal diffusivity of typical chernozems in the Kamennaya Steppe reserve,” Eurasian Soil Sci. 48, 177–182 (2015).

    Article  Google Scholar 

  5. 5.

    A. G. Bolotov, Doctoral Dissertation in Biology (Moscow, 2017).

    Google Scholar 

  6. 6.

    A. F. Vadyunina and Z. A. Korchagina, Manual for Analysis of Physical Properties of Soils (Agropromizdat, Moscow, 1986) [in Russian].

    Google Scholar 

  7. 7.

    V. N. Dimo, “Dependence between thermal diffusivity and moisture of soils,” Pochvovedenie, No. 12, 729–734 (1948).

    Google Scholar 

  8. 8.

    B. M. Kogut, V. A. Bol’shakov, A. S. Frid, N. M. Krasnova, E. S. Brodskii, and V. I. Kuleshov, Analytic Support of the Monitoring of Soil Humus Status: Methodological Guidelines (Russian Academy of Agricultural Sciences, Moscow, 1993) [in Russian].

    Google Scholar 

  9. 9.

    K. I. Lukiashchenko, Candidate’s Dissertation in Biology (Moscow, 2012).

    Google Scholar 

  10. 10.

    K. I. Luk’yashchenko, T. A. Arkhangel’skaya, and A. B. Umarova, “Thermal diffusivity of plowed leached meadow-chernozemic soils in the Adygeya Republic,” Eurasian Soil Sci. 45, 404–407 (2012).

    Article  Google Scholar 

  11. 11.

    P. I. Tikhonravova, “Assessment of the thermophysical properties of soils in the Transvolga solonetzic complex,” Pochvovedenie, No. 5, 50–61 (1991).

    Google Scholar 

  12. 12.

    P. I. Tikhonravova and N. B. Khitrov, “Estimation of thermal diffusivity in Vertisols of the Central Cis-Caucasus region,” Eurasian Soil Sci. 36, 313–322 (2003).

    Google Scholar 

  13. 13.

    A. F. Chudnovskii, Physics of Thermal Exchange in Soil (Gostekhizdat, Leningrad, 1948) [in Russian].

    Google Scholar 

  14. 14.

    N. H. Abu-Hamdeh, “Thermal properties of soils as affected by density and water content,” Biosyst. Eng. 86 (1), 97–102 (2003).

    Article  Google Scholar 

  15. 15.

    J. Busby, “Thermal conductivity and diffusivity estimations for shallow geothermal systems,” Quart. J. Eng. Geol. Hydrogeol. 49 (2), 138–146 (2016).

    Article  Google Scholar 

  16. 16.

    J. Côte and J.-M. Konrad, “A generalized thermal conductivity model for soils and construction materials,” Can. Geotech. J. 42, 443–458 (2005).

    Article  Google Scholar 

  17. 17.

    O. T. Farouki, Thermal Properties of Soils (Trans Tech, Clausthal-Zellerfeld, 1986).

    Google Scholar 

  18. 18.

    A. Makeev, E. Kulinskaya, and T. Yakusheva, “Surface paleosols of the loess island within Moscow glacial limits: Vladimir Opolie,” Quat. Int. 365, 159–174 (2015).

    Article  Google Scholar 

  19. 19.

    N. J. McKenzie and D. W. Jacquier, “Improving the field estimation of saturated hydraulic conductivity in soil survey,” Aust. J. Soil Res. 35, 803–825 (1997).

    Article  Google Scholar 

  20. 20.

    D. A. O’Connell and P. J. Ryan, “Prediction of three key hydraulic properties in a soil survey of a small-forested catchment,” Aust. J. Soil Res. 40, 191–206 (2002).

    Article  Google Scholar 

  21. 21.

    Y. A. Pachepsky, W. J. Rawls, and H. S. Lin, “Hydropedology and pedotransfer functions,” Geoderma 131, 308–316 (2006).

    Article  Google Scholar 

  22. 22.

    R. J. Parikh, J. A. Havens, and H. D. Scott, “Thermal diffusivity and conductivity of moist porous media,” Soil Sci. Soc. Am. J. 43, 1050–1052 (1979).

    Article  Google Scholar 

  23. 23.

    S. J. Park and P. L. G. Vlek, “Environmental correlation of three-dimensional soil spatial variability: a comparison of three adaptive techniques,” Geoderma 109, 117–140 (2002).

    Article  Google Scholar 

  24. 24.

    C. D. Peters-Lidard, E. Blackburn, X. Liang, and E. F. Wood, “The effect of soil thermal conductivity parameterization on surface energy fluxes and temperatures,” J. Atmos. Sci. 55, 1209–1224 (1998).

    Article  Google Scholar 

  25. 25.

    S. Popp, C. Beyer, F. Dahmke, and S. Bauer, “Model development and numerical simulation of a seasonal heat storage in a contaminated shallow aquifer,” Energy Procedia 76, 361–370 (2015).

    Article  Google Scholar 

  26. 26.

    M. S. Roxy, V. B. Sumithranand, and G. Renuka, “Variability of soil moisture and its relationship with surface albedo and soil thermal diffusivity at Astronomical Observatory, Thiruvananthapuram, south Kerala,” J. Earth Syst. Sci. 119 (4), 507–517 (2010).

    Article  Google Scholar 

  27. 27.

    M. S. Roxy, V. B. Sumithranand, and G. Renuka, “Estimation of soil moisture and its effect on soil thermal characteristics at Astronomical Observatory, Thiruvananthapuram, south Kerala,” J. Earth Syst. Sci. 123 (8), 1793–1807 (2014).

    Article  Google Scholar 

  28. 28.

    J. Simunek, M. Th. van Genuchten, and M. Šejna, “Recent developments and applications of the HYDRUS computer software packages,” Vadoze Zone J., (2016). doi 10.2136/vzj2016.04.0033

    Google Scholar 

  29. 29.

    B. A. Schumacher, Methods for the Determination of Total Organic Carbon (TOC) in Soils and Sediments (Ecological Risk Assessment Support Center, Las Vegas, 2002).

    Google Scholar 

  30. 30.

    N. Sugathan, V. Biju, and G. Renuka, “Influence of soil moisture content on surface albedo and soil thermal parameters at a tropical station,” J. Earth System Sci. 125 (5), 1115–1128 (2014).

    Article  Google Scholar 

  31. 31.

    Z. Tian, Y. Lu, R. Horton, and T. Ren, “A simplified de Vries-based model to estimate thermal conductivity of unfrozen and frozen soil,” Eur. J. Soil Sci. 67 (5), 564–572 (2016). doi 10.1111/ejss.12366

    Article  Google Scholar 

  32. 32.

    V. R. Tarnawski, T. Momose, and W. H. Leong, “Assessing the impact of quartz content on the prediction of soil thermal conductivity,” Géotechnique 59 (4), 331–338 (2009).

    Article  Google Scholar 

  33. 33.

    B. Usowicz and L. Usowicz, “Thermal conductivity of soils—comparison of measured results and estimation methods, Eurosoil 2004 Congress, Freiburg, Germany, September 4–12, 2004, Abstracts of Papers (Institute of Soil Science and Forest Nutrition, Freiburg, 2004).

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to T. A. Arkhangelskaya.

Additional information

Original Russian Text © K.I. Lukiashchenko, T.A. Arkhangelskaya, 2018, published in Pochvovedenie, 2018, No. 2, pp. 179–186.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lukiashchenko, K.I., Arkhangelskaya, T.A. Modelling Thermal Diffusivity of Differently Textured Soils. Eurasian Soil Sc. 51, 183–189 (2018).

Download citation


  • soil thermal diffusivity
  • mathematical modelling
  • pedotransfer functions